Design choices for optimization applications

Susanne Heipcke

Xpress Team, FICO
http://www.fico.com/xpress

Contents
1 Modeling platforms e 1
2 Applicationdesign e e e e 3
3 Xpress-Mosel e e e e e 5
4 Mosel: Selected new features 10
4.1 Distributed model execution, 11
4.2 IOcallbacks. o i e e e 14
43 XMLinterface e e 15
5 Applicationexamples e e 17
5.1 Alternative interfaces: Portfolio rebalancing 17
5.2 Distributed Mosel: Client-server 21
5.3 Visualization: Aircraftrouting. 21
SUMMANY . . . o o e 24

1 Modeling platforms

Notes

Model development cycle

Problem Computational
conception problem instance

Interpretation Computational
& analysis solution instance

F e vod solution 7

e —_

Human Computer

Why use modeling software?

e Developing a working model is the difficult bit
¢ Important to have software that helps

- speed to market

verify correctness
maintenance & modification
algorithmic considerations
execution speed

Modeling platforms (©2010 Fair Isaac Corporation. All rights reserved. page 1

Modeling platforms

©
3
= =
% d_ Modeling + Programming
O o
F Model building libraries
= o
< [e]

T cul

mp-model
GAMS
AMPL

I Modeling languages

Matrix generators
70s 80s 90s 2000s

Modeling language Modeling library Matrix based

Verify correctness easy quite easy very hard

Maintenance easy harder difficult

Data handling high level native/some intrinsic native language

Building algorithms language dependent easy quite easy
Model execution speed possibly slower faster fastest

Speed to market fast slow slowest

Xpress modeling interfaces
e Mosel

— formulate model and develop optimiza-
tion methods using Mosel language / en-
vironment

e BCL

— build up model in your application code
using object-oriented model builder li-
brary

e Optimizer

- read in matrix files
- input entire matrix from program arrays

Mosel

e A modeling and solving environment

- integration of modeling and solving
- programming facilities
— open, modular architecture

¢ Interfaces to external data sources (e.g. ODBC,
host application) provided
e Language is concise, user friendly, high level

e Best choice for rapid development and deploy-
ment

Modeling platforms (©2010 Fair Isaac Corporation. All rights reserved. page 2

Xpress-BCL

e Model consists of BCL functions within appli-
cation source code (C, C++, Java, C# or VB)
Develop with standard C/C++/Java/C#/VB tools
Provide your own data interfacing

Lower level, object oriented approach

Enjoy benefits of structured modeling within
your application source code

Xpress-Optimizer

e Model is set of arrays within application source
code (C, Java, C#, or VB)

May also input problems from a matrix file
Develop with standard C/C#/Java/VB tools
Provide your own data interfacing

Very low level, no problem structure

Most efficient but lose easy model develop-
ment and maintenance

2 Application design

Application

design

< &
- @

OR specialists/ Analysts/ End users
Research Business experts

Integrated

Notes

Application design (©2010 Fair Isaac Corporation. All rights reserved.

page 3

static dynamic

Restarts (change data)

Tuning (solver parameters,
stopping criteria)

Configuration
(select constraints)

Logging/progress display

Influence solution algorithms
(user—defined cuts or heuristics,
bounds, reject solutions)

Model interfaces Application interface

Development environment

File formats, database

Embedding functionality
(access to and
interaction with model)

Host languages

connectivity

GUI
Independent phases Overlapping phases

Single
flexible
platform

Possibly
several
platforms

All-in—oneg (single phase)

Single

platform

Continuity

Persons / teams involved

Inhouse vs. external

Solver choice _ Solver
interaction
Standard formats F Callbacks

Related problem types
Paradigm switch
User extensions

Decomposition/
Parallelism
Programming facilities

Communication and
coordination mechanisms

Distributed computing

Application design

(©2010 Fair Isaac Corporation. All rights reserved.

page 4

3 Xpress-Mosel

Notes

e A high-level modeling language combined
with standard functionality of programming
languages

— implementation of models and solution
algorithms in a single environment

e Open, modular architecture

— extensions to the language without any
need for modifications to the core system

e Compiled language

— platform-independent compiled models
for distribution to protect intellectual
property

...and also

o Mosel modules

— solvers: mmxprs, mmquad, mmxslp,
mmnl, kalis

- data handling: mmetc, mmodbc, mmoci

— model handling, utilities: mmjobs, mm-
system

- graphics: mmive, mmxad

e |VE: visual development environment (Win-
dows)

e Library interfaces for embedding models into
applications (C, Java, C#, VB)

e Tools: debugger, profiler, model conversion,
preprocessor

Example: Portfolio optimization Problem descrip-
tion

e An investor wishes to invest a certain amount
of money into a selection of shares.
e Constraints:

1. Invest at most 30% of the capital into any
share.

2. Invest at least half of the capital in North-
American shares.

3. Invest at most a third in high-risk shares.

e Objective: obtain the highest expected return
on investment

Xpress-Mosel (©2010 Fair Isaac Corporation. All rights reserved. page 5

Example:

model

maximize Z RET; - frac
SESHARES

Z frac, <1/3

SERISK

Z fracs > 0.5

seNA

Z frac, = 1

SESHARES
Vs € SHARES : 0 < frac; < 0.3

Example: Portfolio optimization Mosel model

declarations

model "Fortfolio optimization with LE"
uses "mmxprs"

! Use Xpress-Optimizer

SHARES = 1..1
RISK = {2,3,4,9,10}

NA = {1,2,3,4}

RET: array(SHARES) of real

! Fraction of capital used per share

frac: array(SHRRES) of mpvar
end-declarations

RET::

t of North-American valuss
c(s) >= 0.5

the capital

n SHARES) frac(s) = 1

s on the inves

SHARES) frac(s)

=r share
0.3

! Solution printing
writeln("Total return: ", getobjval
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))~100, "s"

end-model

Portfolio optimization Mathematical

Example: Portfolio optimization Logical Conditions

1. Binary variables

declarations
frac: array(SHARES) of mpvar
buy: array(SHARES) of mpvar
end-declarations

is in portfolio,

otal number of assets

HARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary
frac(s) <= buy(s)
end-do

2. Semi-continuous variables

declarations
frac: array(SHARES) of mpvar
end-declarations

! Upper and lower bounds on the investment per share

forall(s in SHARES) do

frac(s) <= MAXVAL

frac(s) is_semcont MINVAL

end-do

capital used per sha
0 othervise

! Fraction of capital used per s

Xpress-Mosel

(©2010 Fair Isaac Corporation. All rights reserved.

page 6

Example: Portfolio optimization Extended problem

o We wish to

— run the model with different limits on the

portion of high-risk shares,

- represent the results as a graph, plotting
the resulting total return against the de-

viation as a measure of risk.

e Algorithm: for every parameter value

- re-define the constraint limiting the per-
centage of high-risk values,
- solve the resulting problem,
— if the problem is feasible: store the solu-
tion values.

if at = XPRS OPT) then ! G

getobival

SOLDEV (ct) := getsol (sum(s in SHARES) DEV(s)~frac(s)
else
writeln("No solution for high-risk values <= ", 100%r/20, "s"
end-if

end-do

! Draving

declaratior

plotl, plot2, plet3: integer
end-declarations

ploti
ploc2
plocd

forall(r in 1..ct) IV 2t (plotl, SOLRET(r), SOLDEV(r)):

forall(r
IVEdr:

2..et)
(plotl, SOLRET(r-1), SOLDEV(zr-1), SOLRET(r), SOLDEV(Z))

forall (s in SHARES - RISK) do
1ot2, RET(s), DEV(s))

IVEdr 1(plot2, RET(s)+3.4, 1.3 (DEV(s)-1), s)
end-do

RISK) do

lot3, RET(s), DEV(s))

1(plot3, RET(s)-2.5, DEV(s)-2, s)

! | [M Soition vaiues
L Lownsk
o | IV M High ik
. “f
P <iccom /

[] |j —[bank
=

h to represent results (‘plotl’) and data ('plot2’' & 'pl

Xpress-Mosel

(©2010 Fair Isaac Corporation. All rights reserved.

page 7

Data handling

e Physical files:

e In

- text files (Mosel format, new: binary for-
mat, diskdata; free format, new: XML,
— spreadsheets, databases (ODBC or specific

drivers)
memory:

— memory block/address

— streams; pipes; callbacks (new: 10 call-

back)

[ut from spreadsheet

initializations from "mmodbc.excel:" + DATAFILE
[RET,RISK,NA] as DBDATA

end-initializations

! Solution output to spreadsheet
declarations

Solfrac: array(SHARES) of real
end-declarations

forall(s in SHARES) Solfrac(s):= getsol(fracis))+100
initializations to "mmodbc.sxcel:" + DATAFILE

Solfrac as "grow;"+DBSOL
end-initializations

HERFANERE GGG G e

17

B C D E F G H

Data ranges used by "folioexcel.mos™:
R
3
treasury
hardware 7] 1
theater 26 1
telecom 1 1
brewery
highways
cars
bank [
software 31 1
electronics 21 1

XAD application

Paiameters
Max. risk:

Min. per region:
Max. per regian
Max. per sector
Min. per value:
Max per value:

Max. no. of shares:

Problem instance

Datafile: foliol0.dat

&3¢ Portfolio Optimization

0333333

high
highwaysT-

[E=E EeE 557

FIC

10.00
1

10.00%
13.33%

Portfolio Optimization Results

I

Problem instance:
folio10.dat

Date: 09-jun-2010,
22:10:22

Total return: 21.6433

Number of shares: 8

theatero 10.00% o

Xpress-Mosel

(©2010 Fair Isaac Corporation. All rights reserved.

page 8

Advanced solving tasks

e Infeasibility handling

- definition of slack variables
— IS (irreducible infeasible sets)
- infeasibility repair meachanism

e Solution enumeration

— obtain the N best solutions

Solution enumeration

! Set the max. number of solutions to store (defzult: 10)
setparam("XPRS_enummaxsol”, 25)

! Solve the problem, ensbling the solution enumerator
maximize (XPRS_ENUM, Return)

! Print out 211 solutions ssved by the
forall(i in 1..getparam("XPRS_enumsols")) do
selectsol (i)
writeln("Solution ", i)
print_sol

end-do

! Select a solution from the pool

! Solution printing
procedure print_sol

writeln("Total return: ", getobjwal)

forall(s in SHARES | getsol(frac(s))>0)

writeln(s, ": ", getsol(frac(s))*100, "% (", getsol(buy(s)), ™)")
end-procedure

Standard MIP search: Solution enumerator:

MIP Objective: MIP Objsctive
[V ~+ Best solution

¥ = Best soution
[V =+ Best bound 7 a e el g [~+ Best bound
[v B Integer solutions [O Irteger solutions
2

Obiactive

Objective

Schemes of decomposition and concurrent solving

The "multis":

Mosel instance
— multi-solver

uses ‘'mmxprs’
uses ‘'mmxslp’

The "multis":

Mosel instance

— multi-solver
— multi-problem

Problem Problem

Xpress-Mosel (©2010 Fair Isaac Corporation. All rights reserved. page 9

The "multis":

Mosel instance

— multi-solver

— multi-problem

- multi-model Problem Problem
The "multis":

Local instance Remote instance

- multi-solver

— multi-problem

— multi-model events

— multi-node

Simple parallel runs

- different data instances
- different algorithm configurations

Decomposition

- Benders
- Dantzig-Wolffe

Column generation

- loop over top node
— branch-and-price

Cut generation

— (cut-and-branch, branch-and-cut)
- adding constraints

4 Mosel: Selected new features

Notes

Mosel: Selected new features (©2010 Fair Isaac Corporation. All rights reserved. page 10

4.1 Distributed model execution

e mmjobs: facilities for model management,
synchronization of concurrent models based
on event queues, shared memory IO driver.

e New: extending capacities for handling multi-
ple models to distributed computing using sev-
eral Mosel instances (running locally or on re-
mote nodes connected through a network)

e Mosel instance management: connecting and
disconnecting Mosel instances, access to re-
mote files, handling of host aliases (new type:
Mosel)

¢ Remote connection 10 drivers: two drivers
(xsrv and rcmd) for creating remote Mosel in-
stances.

e Remote file acces 10 drivers: access to phys-
ical files or streams on remote Mosel in-
stances (rmt), usable wherever Mosel ex-
pects a (generalized) filename, in particular in
initializations blocks.

e Remote machine must run a server

— Default (as specified by value of control
conntmpl): Mosel server xprmsrv (started
as separate program, available for all
platforms supported by Xpress), connect
with driver xsrv

connect (mosInst, "ABCD123")
! Same as: connect (mosInst, "xsrv:ABCD123"

— Alternative: other servers, connect with
driver rcmd, e.g. with rhs, (NB: Mosel
command line option -r is required for
remote runs):

connect (mosInst, "rcmd:rsh ABCD123 mosel -xr"

e The Mosel server can be configured.

— Use this command to display the available
options:

xprmsrv —h

Configuration options include verbosity
settings, choice of the TCP port, and the
definition of a log file.

- Alternatively, use a configuration file for
more flexible configuration and to define
multiple environments

xprmsrv myconfig.conf

Mosel: Selected new features (©2010 Fair Isaac Corporation. All rights reserved. page 11

Configuration file

e Contents of myconfig.conf:

Global setting of a log file
LOGFILE=/tmp/logfile.txt

Add a password to the default environment ’xpress’
[xpress]
PASS=hardone

Define new environment using a different Xpress version
[xptest]

XPRESSDIR=/opt/xpressmp/testing

XPRESS=/opt/xpressmp/lic

MOSEL_CWD=$XPRESSDIR/workdir

e Usage:
rl:= connect (instl, "xsrv:localhost/xpress/hardone"
r2:= connect (inst2, "xrsv:mypcname/xptest")

Local instances

e Remote machine may be identical with the cur-
rent node (new instance started on the same
machine in a separate process)

connect (mosInst, "")
! Same as: connect (mosInst, "rcmd:mosel -r'")

connect (mosInst, "localhost")
! Same as: connect (mosInst, "xsrv:localhost")

Executing a submodel

model "Run model rtparams"
uses "mmjobs"

declarations
modPar: Model
end-declarations

! Compile the model file
if compile("rtparams.mos")<>0 then exit (1l); end-if

! Load the bim file
load (modPar, "rtparams.bim")

! Start model execution + parameter settings
run (modPar, "PARAM1=" + 3.4 + ",PARAM3='a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

Executing a submodel remotely

model "Run model rtparams remotely"
uses "mmjobs"

declarations
modPar: Model
mosInst: Mosel
end-declarations
! Compile the model file
if compile ("rtparams.mos")<>0 then exit (1l); end-if

NODENAME := "" ! "" for current node, or name, or IP address

! Open connection to a remote node
if connect (mosInst, NODENAME)<>0 then exit (2); end-if

! Load the bim file
load(mosInst, modPar, "rmt:rtparams.bim")

! Start model execution + parameter settings
run (modPar, "PARAMI1=" + 3.4 + ",PARAM3=’'a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

Mosel: Selected new features (©2010 Fair Isaac Corporation. All rights reserved. page 12

model "Compile and run model rtparams remotely"
uses "mmjobs"

declarations
modPar: Model
mosInst: Mosel
end-declarations

NODENAME := "" ! """ for current node, or name, or IP address

! Open connection to a remote node
if connect (mosInst, NODENAME)<>0 then exit (2); end-if

! Compile the model file remotely
if compile (mosInst, "", "rmt:rtparams.mos", "rtparams.bim")<>0 then

exit (1); end-if ! Load the bim file
load (mosInst, modPar, "rtparams.bim")

! Start model execution + parameter settings
run (modPar, "PARAM1=" + 3.4 + ",PARAM3=’'a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

New and overloaded subroutines

e Instance connection/disconnection

r:= connect (myInst, "")
disconnect (myInst)

e Remote compilation & loading

r:= compile (myInst, "", "filename.mos", "filename.bim")
load (myInst, myModel, "filename.bim")

e Redirecting Mosel streams

setdefstream(myInst, F_OUTPUT, "rmt:instoutput.txt")

Some utilities

e System information

compName:= getsysinfo (SYS_NODE) ; allinfo:=getsysinfo (myInst)
currNode:= getparam("NODENUMBER"); parent:= getparam("PARENTNUMBER")
modelID:= getparam("JOBID") ; instID:= getid (myInst)

e Instance status information

if getstatus (myInst)<>0 then
writeln("Instance is not connected")
end-if

o Aliases

sethostalias ("localhost2", "localhost")

r:= connect (myInst, "localhost2")

sysName:= gethostalias ("localhost2"); getaliases (allAliases)
clearaliases

Distributed model execution

e Documentation: 'Mosel Language Reference
manual’, Chapter 7 mmjobs

e Examples: see newest version of the whitepa-
per 'Multiple models and parallel solving with
Mosel’, Section 2.8 Working with remote Mo-
sel instances

e Another introductory example in 'Guide for
evaluators 2', Section 6 Working in a dis-
tributed architecture

Mosel: Selected new features (©2010 Fair Isaac Corporation. All rights reserved. page 13

4.2

10 callbacks

e In-memory communication so far: fixed data

structure sizes

New: alternative communication mechanism
working with flows enables dynamic sizing of
data structures on the application level

— particularly useful for solution output
where effective data sizes are not known
a priori

— available in C, Java, .NET

Pass the address of the function (C) or class
(Java) implementing the callback to Mosel via
model parameters

initializations to: use the Mosel post-
processing library functions to retrieve data
from Mosel into the application
initializations from: new set of func-
tions to send data to Mosel, using the same
format as the default text file format

10 callbacks (C)

mydata: [("indl" 3) [5 1.2] ("ind2" 7) [4 6.5]]

XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, O0);
XPRMcb_sendctrl (cb, XPRM_CBC_OPENNDX, O0);

1

!
XPRMcb_sendstring(cb, "indl", 0); ! "indl"
XPRMcb_sendint (cb, 3, 0); ! 3
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendint (cb, 5, 0); ! 5
XPRMcb_sendreal (cb, 1.2, 0); ! 1.2
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0); ! 1
XPRMcb_sendctrl (cb, XPRM_CBC_OPENNDX, O0); ! (
XPRMcb_sendstring (cb, "ind2", 0); ! "ind2"
XPRMcb_sendint (cb, 7, 0); ! 7
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl (cb, XPRM_CBC_OPENLST, O0); ! [
XPRMcb_sendint (cb, 4, 0); ! 4
XPRMcb_sendreal (cb, 6.5, 0); ! 6.5
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0); !]
XPRMcb_sendctrl (cb, XPRM_CBC_CLOSELST, 0); ']

10 callbacks (Java)
mydata: [("indl"™ 3) [5 1.2] ("ind2" 7) [4 6.5]]
ictx.sendControl (ictx.CONTROL_OPENLST) ; [
ictx.sendControl (ictx.CONTROL_OPENNDX) ; ! (
ictx.send("ind1l"); ! "indl"
ictx.send(3); ! 3
ictx.sendControl (ictx.CONTROL_CLOSENDX) ; !)
ictx.sendControl (ictx.CONTROL_OPENLST) ; ! [
ictx.send(5);
ictx.send(1.2); ! 1.2
ictx.sendControl (ictx.CONTROL_CLOSELST) ; !]
ictx.sendControl (ictx.CONTROL_OPENNDX) ; ! (
ictx.send("ind2"); ! "ind2"
ictx.send(7); ! 7
ictx.sendControl (ictx.CONTROL_CLOSENDX) ; !)
ictx.sendControl (ictx.CONTROL_OPENLST) ; ! [
ictx.send (4); ! 4
ictx.send(6.5); ! 6.5
ictx.sendControl (ictx.CONTROL_CLOSELST) ; !]
!

ictx.

sendControl (ictx.

CONTROL_CLOSELST)

7

Mosel: Selected new features

(©2010 Fair Isaac Corporation. All rights reserved. page 14

10 callbacks

e Documentation: ‘Mosel Library Reference
manual’, Section 1.5.2.2 cb driver - Handling
of initializations blocks

e Examples: see newest version of the 'Mosel
User Guide’, Sections 13.4.3 Dynamic data (C),
14.1.6.3 Dynamic data (Java)

4.3 XML interface

e The module smew provides an XML interface
for the Mosel language.

e smew relies on two external libraries without
which the module will not work:

— scew ('simple C expat wrapper’) — han-
dling of the XML tree
- expat — the parser

Structure of an XML document
<?xml ... ?> Preamble

<root>
<parent>
<element attrname="attrvalue">
contents
<child>
<leaf>leafcontents</leaf>
</child>
<child>2nd child contents</child>
</element>
<emptyelement attrname="attrvalue" />
</parent>
</root>

smew functionality

o New types:

— xmldoc represents an XML document

- xmleltref is a reference to a
node/element in the document.
Several xmleltref may reference the
same element and the module does
not check consistency: if an element is
removed, it is up to the user to make
sure none of its references will be used
afterwards

Mosel: Selected new features (©2010 Fair Isaac Corporation. All rights reserved. page 15

e Subroutines:

— File access: 1oad, save

— Document structure: getroot,
setroot, isvalid, getpreamble,
setpreamble, getchildren,
getparent, add, remove

- Handling elements: getname,
setname, getcontent,
get[int|reall|bool|str]content,
setcontent, getattr,
get[int|real|bool|str]attr,
setattr, delattr, getallattr

Example: Portfolio optimization XML data format

declarations

SHARES: set of string
RISK: set of string
NA: set of string

Set of shares
Set of high-risk values among shares
Set of shares issued in N.-America

RET: array (SHARES) of real Estimated return in investment
AllData: xmldoc ! XML document

ShareList: list of xmleltref ! List of XML elements
end-declarations

! Reading data from an XML file
load(AllData, "folio.xml")
getchildren(getroot (AllData), ShareList, "share")

RISK:= union(l in SharelList | getattr(l,"risk")="high")
{getstrattr(l, "name") }
NA:= union(l in Sharelist | getattr(l,"region")="NA")

{getstrattr (1, "name") }

forall(l in ShareList) RET (getstrattr(l,"name")):= getintattr(l, "ret")

e Data file folio.xml:

<portfolio>
<share name="treasury" ret="5" dev="0.1" country="Canada"
region="NA" risk="low" />
<share name="hardware" ret="17" dev="19" country="USA"
region="NA" risk="high" />

<share name="electronics" ret="21" dev="16" country="Japan"
region="Asia" risk="high" />

</portfolio>
declarations
SHARES: set of string ! Set of shares
frac: array (SHARES) of mpvar ! Fraction of capital used per share
AllData: xmldoc ! XML document
Share,Root, Sol: xmleltref ! XML elements

end-declarations

! Create solution representation in XML format
Root:= setroot (AllData, "result")
Sol:= add(Root, "solution")
forall (s in SHARES) do
Share:= add(Sol, "share")

setattr (Share, "name", s)
Share.content:= frac(s).sol
end-do
save (AllData, "result.xml") ! Save solution to XML format file
save (AllData, "") ! Display XML format solution on screen

Mosel: Selected new features

(©2010 Fair Isaac Corporation. All rights reserved.

page 16

e Generated output file result . xml:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<result>
<solution>
<share name="treasury">0.3</share>
<share name="hardware">0</share>

<share name="electronics">0</share>
</solution>
</result>

smew distribution

e Available for download from the Mosel open
source webpage
e Archive contains

- module source file: smew.c

- module library file: smew.dso (copy into
subdirectory dso)

- library files: xexpat.* and xscew.x
(copy into subdirectory bin [Windows] or

1ib [Unix])

— documentation: smew.txt

- examples: folioxml .mos,
folioxmlgp.mos, booksearch.mos,

xmltest.mos

5 Application examples

5.1 Alternative interfaces: Portfolio rebalancing

Portfolio rebalancing: Problem description

e Modify the composition of an investment port-
folio as to achieve or approach a specified in-
vestment profile.

Application architecture

¢ Single, configurable model file
o Different interfaces for model execution

- stand-alone mode (command line or
through Xpress-IVE) for development

— graphical interface (written with XAD) for
single model runs and simulation

- Java application for running batches of
model instances

Notes

Application examples (©2010 Fair Isaac Corporation. All rights reserved. page 17

Optimization application in Mosel
Standalone

start application
return results

Data files

Output files

Optimization application in Mosel
XAD GUI

Configu—
ration file

return results

start application

Data files

Output files

Optimization application in Mosel
Embedded into host application

Data files

Summary 4/
output return results

start application

Output files

Optimization application in Mosel
Alternative interfaces

Configu—
ration file

XAD IVE

plica ion|

Output files

Data files

Summary
output Summary

output

Data files

Application examples (©2010 Fair Isaac Corporation. All rights reserved. page 18

Input

e Stand-alone and XAD: data input from text
files directly into Mosel

— uses a filter module to accomodate differ-
ent number formats

e Java: data read and stored by host application;
communication with model instances through
memory

Output

XAD:

Textual output log on screen or to file
Optionally detailed HTML output
Java: summary statistics of multiple runs

— summary statistics in the case of multiple
runs
— optional output to Excel

XAD interface

- data files
— parameter settings

- selection of constraints

Choice of solving mode:

Graphical user interface (Windows)
Configuration of model runs

- repeated runs for a single model (simula-
tion)

- solve all

instances from customer file

(evaluation of parameter settings)

XAD interface: Detailed results

Actor2. [F4258588

o
=) [[o i
[Resuts and analysis | [[Model log
Total opinion is: 1.71948 Portfolio: 34298866
Total risk is: 2 Portfolio balance: 44306.42
(All constraints satisfied) Portfolio type: Affluent
Portfolio profile: Low
Suggested portfolio:
Product/position Tnitial Buy Result
P1552066562 241317 2413.17 - 0.00 0%
P1557874257 3.00 3.00 - 0.00 0%
P1555550795 37417.50 37417.50 - 0.00 0%
P1558150911 3108.69 0.00 - 310860 7.016%
P0000022632 1364.06 1364.06 - 0.00 0%
P1541637568 - - 3101449 31014.49 70.000%
P1541632114 443064 443064 10.000%
P1520156920 5752.50 5752.50 12.984%

Graphical comparison of results

Detailed analysis:
Constraint

Total risk
Percentage of A

Percentage of D

Initial Result Min Max|

4.798 2.000 2 299

15.548 20.000 20 25
0 0 0 100 =

n n ol

&7 &

Al
o1 M0t 111121 131 181 1511171 _is1 s

Application examples

(©2010 Fair Isaac Corporation. All rights reserved.

page 19

XAD interface: Parameter and version log

Portfolio Rebalancing (=T

Potolo detirs N
Optize | Sobeal Ba | Sobed

e — 5
Resulis and analysis | | Model log |
csciverson: B

[~ Limits on rumber of hansactions

Factor. [12 F—
Seg Pivale: i
Seg Affuent F o

woseiversion: FXCH0

| 13-jan-2009, 00:31:14

seofesnd 1P Model Limiting total risk: yes
M s 0 impose itbuions configuration: Limiting number of transactions: yes
Zz‘;‘i::;‘:m ,122;‘['_ Limiting LIOAD distribution: yes

Limiting monetary zone ves

distribution:

Limiting sectorial distribution: yes

Limiting geographical distribution: no (Balance below limit)
Limiting minimum transaction size: yes

Enable constraint relaxation: yes

(Dot s
Potclo [EEangles Padine |
Product[EEangls Padine
Toget [EanglsPalaine

o
¥ Liniing toal sk Business Number of transactions allowed for segment Affluent: 3 - 10
¥ Liniting numbet of tansactons parameters: Number of transactions allowed for segment
¥ Liniing LIOAD ditibuion Pereonal 1-3
,’; t‘”‘:‘"g ””"f‘a"y;“‘": “f‘””“““" Number of transactions allowed for segment Private: 3-7
5 Lo secmashostdtton Minimum limit (in Euro) to impose a correct sectorial
IV Limiting minimum iansaction size. distribution: 1000
[Minimum limit (in Euro) to impose a correct

geographical distribution: 10000

Load configuration o

cea || I[nI . M. . .
T s e s e M e & A e s e

XAD interface: Multiple run summary

Portfolio Rebalancing (=T

oo et X
Optze e | Temiaes fairlstac
O 5

Do Portfolio Rebalancing Summary Report

O |

Seg Persona: R
14213309,14213309 Solved 4.2340s 1.55363 2 1:13.86% 12:66.14% 76: 0.72% 78

Miimum lmis to impose disibutions
Sectorial distrb. 1000 14393335,60285262 Solved 0.1410s 1.3675 2 1:50.00% 12:25.00% 92:25.00%
Geographical distrb.: [10000 14867952,14867952 Solved 0.0470s 1.32 0.5 2:50.00% 3:50.00%

[Datafies—— 1 | 15742661,63314413 Solved 0.0930s 1.27126 3 13:58.00% 58: 8.33% 62: 6.44% 94

Fotolic: ~[C-/Ewemples/FortoioRe

Product. [C:7Examples/PortfolioRe 28343260,34169052 Solved 1.1410s 1.38261 2 1:23.73% 2:10.16% 14:46.11% 55
Teiget: [C7Ewemples/FortoioRe
—— 34014318,34014318 Solved 3.8130s 1.55363 2 1:13.86% 12:66.14% 76: 0.72% 7S
¥ Limiing total risk. 34042093,58066075 Solved 0.1260s 1.73 2 12:70.00% 21:10.00% 94:20.00%

¥ Limiting number of transactions
5 Lo L1040 st 34208866,34298866 Solved 1.187051.451482 1:3.63% 3:25.83% 4:7.02% 25

W Liniing monelay zone dibuton | | 34502223,34502223 Solved 0.0780s 1.51745 0.9 1:24.75% 3:50.00% 22:25.25%
"; t‘”‘:‘”gm‘ﬂ"a‘:‘&““:“‘f:‘ 56924671,88434181 Solved 0.0470s1.76 0 3:50.00% 21:50.00%
ming sesarEphes AN 41242192,28249857 Failed (No eligible OUT products)

[~ Limits on rumber of hansactions

IV Limiting minimum iansaction size.

¥ Enable elavation

Save configuation B
il | 3
Load conliguration

oo M I el

- Ty
718 e G0 i1’ a2 T1a1 et s et a7 11 1en

Some highlights
e Model:

— easy maintenance through single model

— deployment as BIM file: no changes to
model by end-user

- language extensions according to specific
needs

e Interfaces:

- several run modes adapted to different
types of usages

- efficient data exchange with host applica-
tion through memory

— parallel model runs (Java) or repeated se-
quential runs (XAD)

Application examples

(©2010 Fair Isaac Corporation. All rights reserved.

page 20

5.2 Distributed Mosel: Client-server

Distributed Mosel: Problem description

e Multi-user optimization application process-
ing a large number of optimization model in-
stances

e Idea: replace the preselected, static assign-
ment of optimization runs by a Mosel server
that controls the job queues

Distributed Mosel: Client-server architecture

User

® Production
machine

3
«
o
=
5]
[a]

Production

User N achine

Distributed Mosel: Highlights

e Use Mosel lists for representation of dynamic
queueing system

e Mosel master (‘server’) model communicates
with database and handles remote submodels

5.3 Visualization: Aircraft routing

Aircraft routing: Problem description

e For given sets of flights and aircraft, determine
which aircraft services a flight.
e Aircraft are not identical

- they cannot all service every flight

— a specific maintenance site must be used
per plane

— some scheduled long maintenance breaks

e Starting condition: each aircraft has a starting
position and a specific amount of accumulated
flight minutes

Application examples (©2010 Fair Isaac Corporation. All rights reserved.

page 21

Aircraft routing: Representation

e Temporal (activity on node) network:

- a flight corresponds to a node

- ‘cost’ of node: flight minutes (# elapsed
time)

— successor nodes: flights starting from a
destination within a given time window
after arrival of predecessor

— maintenance: represented by a node

- aircraft: commodity traveling through the
network

BtoC,day2 CtoD,day3
{
=4

AtoB, dayi —
- -4
-~ Bto C,day3

kS

Bto B, day 2

Aircraft routing: Decomposition

e Different views are possible:

- per time unit (e.g., day)
— per commodity (aircraft)

e Idea: generate set of feasible routes per
aircraft by solving optimization subproblems
maximizing the flight minutes up to each
maintenance stop

— iteratively force usage of 'less preferred’
flights
- may keep suboptimal solutions

Aircraft routing: Application architecture

e Master problem: route selection
e Subproblems: route generation (one instance
per plane)

— parallel, possibly remote, execution of
submodels

e User interface (optional): XAD GUI

Application examples (©2010 Fair Isaac Corporation. All rights reserved. page 22

Aircraft routing: Application GUI

f=lelEs

FICO

Problem solved. Oectve: 15

9 \
v
() OFigns (] FighDep (1 Fighan [1 FighFom (1 FighTo [1 AssgnedPlane
1 02063 02102080050 3 3 1
2 OGBS 0171020082215 S 1 2 =
3 DAV 0102082025 3 3 2
4 OIN02A0040 0171020082200 2 1 4
5 OU0208 1045 0171072008 1975 ® 1 5
6 0102081200 017102008235 EY 1 5
7 DAVABIID 01102082345 1 2 &
8 OI020080800 0171020082330 6 2 8
9 OI/I0200805 0171020082200 6 2 0
0 CLADZ0080810 0171072008 1525 6 2]
T OI020EIS 01/10200821:10 2 2 o
12 CI/1020080820 017102008 1800 2 5 2
14 01102008 0840 0171072008 2235 6 2 "

Aircraft routing: Visualization

e Visualization of input data helps with under-
standing and analysis of the problem

e Representation of intermediate results during
development (IVE) or as progress report to
users (XAD)

b Arcraft maintenance scheduling ==

Dy view | Plave view] Gont [Hep I ICO
« ’

Po08-10-16

20081014

b Trp essignment editor Sl =]

b Tine: 141020080924

Ti (1070 =] Tio1070:1:1,01/10/2008 00/00:01/10/2008 00:00 deston 690

|

Aircraft routing: User interaction

o Manual construction of routes
e Editing generated plans

Application examples (©2010 Fair Isaac Corporation. All rights reserved. page 23

e

[E=8[E=R =)
Select a plane:
2 - Standard plane (target 15000 dur: 72 at: 1) Cumulated lighttime: 3168
Mext: \ 'J [Add fight Clear route ‘ l Save route
Current t route:
{i} Mesfighs [1 NewFiom [1 NewTe [NewDep [1 Nextdn [1 NesCumul
2 = 1011020080850 0171072008 2215 as08
84 1 1 02/10/200806:55 02/10/2008 2210 9168
Pos
{i} SuccFlights [1 SuceFrom []1 SuccTo [1 SuccDep [1 Succhr []1 SuceDur Gl
1 Maintenance: 1 0 o 72
186 1 1 0310/2008 0855 (03/10/2008 2355 768
168 1 3 03/10/2008 07:40 04/10/2008 0015 4
170 1 1 0310/2008 0320 (03/10/2008 21:25 444
171 1 1002081320 041072008 0005 488
181 1 1 03/10/20081330 03/10/2008 2330 372 i

Summary

e Have seen:

- design choices for optimization applica-
tions

e Xpress-Mosel:
- recent developments make possible im-
plementation of complex algorithms and

a high degree of user interaction

— unique features for handling large-scale
problems:

support of decomposition, concurrent
solving, distributed computing, and also
64bit coefficient indexing

Where to get more information
e Xpress website:

— http://www.fico.com/xpress

e Xpress resources (documentation, whitepa-
pers)

— http://optimization.fico.com
e Searchable on-line examples database:
- http://examples.xpress.fico.com

e Trial download:

- http://decisions.fico.com/downloadTrial.html

Notes

Summary (©2010 Fair Isaac Corporation. All rights reserved.

page 24

	Modeling platforms
	Application design
	Xpress-Mosel
	Mosel: Selected new features
	Distributed model execution
	IO callbacks
	XML interface

	Application examples
	Alternative interfaces: Portfolio rebalancing
	Distributed Mosel: Client-server
	Visualization: Aircraft routing

	Summary

