
http://www.optaconsulting.co.ukCopyright © Opta Consulting Ltd 2010

Experiments with MIP versus
CP for Paint Production

Scheduling

Bob Hattersley

Opta Consulting Ltd

Paint Production Scheduling

 Multiple stages – dispersion, mixing,
packing

 Stages coupled – paint needs a
vessel

 Disparate equipment in each stage

 Disparate batches to schedule

 Challenging problem

Copyright © Opta Consulting Ltd 2010 2 of 26

Contents

 Description of problem

 Initial MIP model

 CP model and enhancements

 Enhanced MIP model

 And back to CP

 Conclusions

Copyright © Opta Consulting Ltd 2010 3 of 26

The Problem

 100 batches to schedule (2 weeks)

• Pre-processed make-to-order + stock

 Due dates

 Choice of (up to) three dispersers

• Close to 100% utilisation

 Choice of ten mixing vessels

 Choice of (up to) three pack lines

• Close to 100% utilisation

Copyright © Opta Consulting Ltd 2010 4 of 26

Copyright © Opta Consulting Ltd 2010 5 of 26

Lifecycle of One Batch

Disperser:

Mixer:

Fill Dispersion T’fer Cl’n

T’fer Mix Wait Transfer Clean

Pack line: Pack Cl’n

 Durations (except for Wait) are fixed

 Different for each batch

 Different for each facility (except Mix)

 No changeover considerations

 Continuous-time model

• Variables for start times (end times)

 Easy constraints:

• Selection of facilities for each batch

• Time offsets

○Start-end on one facility

○Start/end from one stage to next

• Lateness

 Hard: prevent clashes on facilities

Copyright © Opta Consulting Ltd 2010 6 of 26

MIP Model

 Disjunctive constraint?
• Variables: batch a is before b or after b

• (b after a)  (b starts after a ends)

• Complicated by facility choice

• Weak bounds

 Sequencing (vehicle routing)?
• Variables: batch b follows a on facility

• Flow constraints

• Sub-tour elimination

• Changeover is not an issue – timing is

Copyright © Opta Consulting Ltd 2010 7 of 26

MIP Model: Prevent Clashes 1

 Indexing
• Variables: batch b runs at index i on facility f

• Relate batch index start (end) to facility index
start (end)

• Facility index start i+1 ≥ facility index end i

• Extra start variables by (batch, facility, index)

• Lower bounds on start by analysis of length
(sort shortest first)

• Then push out pack bounds by offsets

• Leads to better objective bound and branch
decisions

Copyright © Opta Consulting Ltd 2010 8 of 26

MIP Model: Prevent Clashes 2

 index_runbfi  {0,1}

index_startbfi

facility_startfi

batch_startbs

 index_startbfi ≥ Earliest_startfi . index_runbfi

 index_startbfi ≤ Latest_startfi . index_runbfi

 facility_startfi = ∑b index_startbfi

 batch_startbs = ∑fs,i index_startbfi

 facility_startfi ≥ facility_startfi-1

+ ∑b Lengthbf . index_runbfi

‒ ...

Copyright © Opta Consulting Ltd 2010 9 of 26

Indexing Formulation

b

f

i

s

batch

facility

index

stage

 All methods lead to quadratic model
size

 Impossible to solve in one go

 Solve in steps:

• From n earliest-due unfixed batches

• Select m batches, assign facilities and
sequence

• Fix the selected m batches, repeat

 Choice of n, m?
Copyright © Opta Consulting Ltd 2010 10 of 26

Problem Size

 One .mos file

 Define all variables at the start

 In each step:

• reset(Problem), with Problem do

• Define binaries, fix old choices

• Constraints including fixed and new
batches

• Solve – Presolve eliminates fixed part

• Extract choices

Mosel Implementation

Copyright © Opta Consulting Ltd 2010 11 of 26

MIP Results

Copyright © Opta Consulting Ltd 2010 12 of 26

 Variables are simpler and fewer

• Batch is on facility  Facility that batch is on

• But cannot use strings as identifiers

• Have to setname explicitly

• Data rounded to whole hours so all cpvar

 Constraints mostly easy to write

• equiv(vBatRun(bn)>=1, vBatFac(bn,s)>=1)

• implies(vBatIndex(bn,fn)=i,
vBatStart(bn,s1)=vFacStart(fn,i))

• distribute expects an array of variables?

• Use multiple occurrences instead

Implementation in Kalis 1

Copyright © Opta Consulting Ltd 2010 13 of 26

 Have to use main model/submodels

 Not intelligent about optimisation

• vLate(bn) + vOverdue(bn) >=
vBatEnd(bn,"PAC") – iDueTime(bn)

• vOver2(bn) =
vBatEnd(bn,"PAC") – iDueTime(bn)

• vOverdue(bn) =
maximum({vOver2(bn),vZero})

 Single step, 6 batches, did not finish

Implementation in Kalis 2

Copyright © Opta Consulting Ltd 2010 14 of 26

 Vital to specify strategy as well

• Something like priorities in MIP ...

cpbStrat(1) := assign_var(KALIS_INPUT_ORDER,
KALIS_MAX_TO_MIN, vBatRun)

VarSet := {}

forall (bn in BatFlex)
VarSet += {vBatFac(bn,"DIS")}

cpbStrat(2) :=
assign_and_forbid(KALIS_SMALLEST_DOMAIN,

KALIS_RANDOM_VALUE, VarSet)

Implementation in Kalis 3

Copyright © Opta Consulting Ltd 2010 15 of 26

First full CP Result

Copyright © Opta Consulting Ltd 2010 16 of 26

 Analysis of search tree

• Zoom by selection rectangle

• Branch path by double click

 Almost all time exploring equivalent
mixer assignments

 So shortcut by fixing mixers in code

 Greedy algorithm based on disperser
assignments is (almost) optimal

 But how to control call?

Kalis Enhancement 1

Copyright © Opta Consulting Ltd 2010 17 of 26

 Call routine as a user-defined strategy ...
after disperser strategies

 Fix mixer variables with setval

 End with cp_propagate (OK if fail)

 Do not return a branching variable

 Must not run again in a descendent node

 Compare current depth to mix fix depth

 Have to create callbacks to know what
depth is! (cp_set_branch_callback)

Kalis Enhancement 2

Copyright © Opta Consulting Ltd 2010 18 of 26

Improved CP Result

Copyright © Opta Consulting Ltd 2010 19 of 26

 Would the same approach work in MIP?

 Apply as a cut manager callback

• Use setlb and setub

• Bounds are carried down tree

 When to apply – not automatic

• Check for all dispersers at integer values

• Cannot wait for all dispersers fixed

 Use auxiliary variable as a flag

• Must have (tiny) positive entry in objective

• Bound up to indicate mixers fixed - getlb

Fixing Mixers in MIP 1

Copyright © Opta Consulting Ltd 2010 20 of 26

 Errors!

• Variables no longer existing

• Conflicting bounds set already

• Variables changing identity?

 Recommendation with custom cuts:

• No presolve

• No MIP presolve

• No heuristics

• No cut generation

 Observation – problems caused by:

• Presolve (any options, even everything switched off)

• MIP presolve - reduced cost fixing

Fixing Mixers in MIP 2

Copyright © Opta Consulting Ltd 2010 21 of 26

MIP with Fixed Mixers

Copyright © Opta Consulting Ltd 2010 22 of 26

MIP with Submodels

Copyright © Opta Consulting Ltd 2010 23 of 26

MIP Solving by Day

Copyright © Opta Consulting Ltd 2010 24 of 26

CP Solving by (Partial) Day

Copyright © Opta Consulting Ltd 2010 25 of 26

 CP

• Conceptually easier but traps for the unwary

• Kalis less well integrated in Mosel

• Custom strategy vital to get results

• Exponential time means exponential

 MIP

• Decent solutions without tuning/customisation

• Much better than exponential in practice

• Custom algorithms face disadvantages

• Hidden complexity – unexpected behaviour

Conclusions

Copyright © Opta Consulting Ltd 2010 26 of 26

Copyright © Opta Consulting Ltd 2010

