FICO

FICO™ Xpress Optimization Suite

Xpress-BCL

Reference manual

Release 4.2

Last update 13 May, 2009

www.fico.com Make every decision count™

Published by Fair Isaac Corporation
(©Copyright Fair Isaac Corporation 2009. All rights reserved.

All trademarks referenced in this manual that are not the property of Fair Isaac are acknowledged.

All companies, products, names and data contained within this book are completely fictitious and are used solely to illustrate
the use of Xpress. Any similarity between these names or data and reality is purely coincidental.

How to Contact the Xpress Team

Information, Sales and Licensing

USA, CANADA AND ALL AMERICAS
Email: XpressSalesUS@fico.com

WORLDWIDE
Email: XpressSalesUK@fico.com

Tel: +44 1926 315862
Fax: +44 1926 315854

FICO, Xpress team

Leam House, 64 Trinity Street
Leamington Spa
Warwickshire CV32 5YN

UK

Product Support

Email: Support@fico.com
(Please include ‘Xpress’ in the subject line)

Telephone:

NORTH AMERICA
Tel (toll free): +1 (877) 4FI-SUPP
Fax: +1 (402) 496-2224

EUROPE, MIDDLE EAST, AFRICA

Tel: +44 (0) 870-420-3777

UK (toll free): 0800-0152-153

South Africa (toll free): 0800-996-153
Fax: +44 (0) 870-420-3778

ASIA-PACIFIC, LATIN AMERICA, CARIBBEAN
Tel: +1 (415) 446-6185
Brazil (toll free): 0800-891-6146

For the latest news and Xpress software and documentation updates, please visit the Xpress website at
http://www.fico.com/xpress or subscribe to our mailing list.

mailto:XpressSalesUS@fico.com
mailto:XpressSalesUK@fico.com
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/xpress

Contents

1 Introduction 1
1.1 Anoverview of Xpress-BCL i i e e e e e 1
1.2 Note for Optimizer library users e 1
1.3 Structure of thismanual 2
1.4 Conventions Used o v v i i it i i e e e e e e e e e e 2

I Modeling with BCL 4

2 Modeling with BCL 5
2.1 Problemhandling e e e 5

2.1.1 Initialization and termination L Lo e 5
2.1.2 Problem creationand deletion 5
2.1.3 Otherbasicfunctions e 6
2.1.4 Inputandoutputsettings e 6
2.1.5 Errorhandling L e e e 6
2.2 Variables e e e e 7
2.2.1 Basicfunctions e e e 7
2.2.2 Variablearrays e e e e e 8
2.3 Constraints oL e e e e e e e e e e e e 9
2.3.1 Basicfunctions e 9
2.3.2 Predefined constraint functions 0., 10
2.3.3 Objective function e 10
2.4 Solving and solution information o 10
2.5 Example. . . . e e e e e e e e e 11
2.5.1 Model formulation using basic functions 12
2.5.2 Usingvariable arrays e e e 12
2.5.3 Completing the example: problem solvingand output 14

3 Further modeling topics 16

3.1 Datainputandindexsets e 16
3.1.1 Example . .. e e e e e e 17

3.2 Special Ordered Sets i e e e e e e 19
3.2.1 Basicfunctions e e 19
3.2.2 Array-based SOS definition o 19
3.23 Example . ..o e e e 19

3.3 Outputandprinting L e e e e e e 20
3.3.1 Example . . e e e e e e 21

3.4 Quadratic Programming withBCL e 22
3.4.1 Example e e e e e e e 23

3.5 Usererrorhandling e e e 24
3.6 Efficent modelingwithBCL 26
3.6.1 Namesdictionaries i e e e e 26
3.6.1.1 Disabling the names dictionary 26

BCL Reference Manual (©20009 Fair Isaac Corporation. All rights reserved. pagei

3.6.1.2 Setting the names dictionarysize 27

3.6.2 Handlingofproblems e 27
3.6.2.1 Resettingaproblem 27

3.6.2.2 Releasingaproblem e 27

3.6.3 Constraint definition 27
3.6.3.1 Object-orientedinterfaces. 27

3.6.3.2 Orderofenumeration 28

Il BCL library and class reference 29
4 BCL Clibrary functions 30
4.1 Layout for function descriptions e 30
XPRBaddarrterm o o e e e e e e e e e e e e e 32
XPRBaddcutarrterm e e e e e e e e 33
XPRBaddauts o o e e e e e e e e e e e e e 34
XPRBaddcutterm L e e e e e e e 35
XPRBaddidxel e e e e e e 36
XPRBaddqgterm e e e e e e e e e e e e e e e e 37
XPRBaddsosarrel e e e e e e 38
XPRBaddsosel e e e e e e e e e 39
XPRBaddterm e e e e e e e e e e e 40
XPRBapparrvarel e e e e e e e e e e e e e e 41
XPRBcleardir o i i e e e e e e e e e e e e 42
XPRBdefcbdelvar e e e e e 43
XPRBdefcberr e e e e e 44
XPRBdefcbmsg e e e e 45
XPRBAelarrvar o e e e e e e e e e e e e e e e e e 46
XPRBdelbasis o o e e e e e e e e e 47
XPRBAelctr e e e e e e e e e e e e e 48
XPRBAelcUt e e e e e e e 49
XPRBdelcutterm e e e e e e e e e e e e 50
XPRBdelprob e e e e 51
XPRBdelgterm e e e e 52
XPRBAEISOS . . . o e e e e e e e e e e e e e e e e 53
XPRBdelsosel e e e e e e e e 54
XPRBdelterm e e e e e e e e e e e e e 55
XPRBENArmvVar . . . o o it e e e e e e e e e e e e e e e e e e 56
XPRBexportprob L e e e e e 57
XPRBfinish, XPRBfree i i i e e e e e e e e e e e 58
XPRBIiIXVAr . . . e e e e e e e e e e e e 59
XPRBgetact e e e e e e e e e e 60
XPRBgetarrvarname L e e e e e e e e e e e 61
XPRBgetarrvarsize e e e e e e e e e e e e e 62
XPRBgetbounds e e e e e e e e 63
XPRBgetbyname e e e e e e e e 64
XPRBgetcolnum e e e e e e e 65
XPRBgetctrname e e e e e e e e e e 66
XPRBGetctrrng o o o e e e e e e e e e e e e 67
XPRBgetctrtype o e e e e e e e e e 68
XPRBgetcutid i e e e e e e e e e e e e e 69
XPRBgetcutrhs e e e e e e e e 70
XPRBgetcuttype o o e 71
XPRBgetdelayed e e e e 72
XPRBgetdual e e e e 73

Contents (©2009 Fair Isaac Corporation. All rights reserved. page ii

XPRBgetidxel o o e e e e e e e e e e 74

XPRBgetidxelname e e e e e e e e e 75
XPRBgetidxsetname e e e e e e e e 76
XPRBgetidxsetsize v v i e e e e e e e e e 77
XPRBGetiis o e e e e e e e e e e e e e e e e 78
XPRBgetindicator e e e e e e e e e e 80
XPRBgetindvar e e e e e e e e e e e e e 81
XPRBgetlim o e e e e 82
XPRBgetlpstat e e e e e 83
XPRBgetmipstat e e e 84
XPRBgetmodcut o o ot e e e e e e e e e e e e e e e 85
XPRBGetnUMIiS o o o ot e e e e e e e e e e e e e e e 86
XPRBgetobjval e e e e e e e e 87
XPRBgetprobname e e e 88
XPRBgetprobstat e e e e e 89
XPRBgetrange o e e e e e e e e e e e e e e e 90
XPRBGetrcost e e e e e e e e e e e e e 91
XPRBgetrhs e e e e e e e e e e 92
XPRBgetrownum o e e e e e e e e e e e e e 93
XPRBgetsense o e e e e e e e e e e 94
XPRBgetslack o o e e e e e e e e e e 95
XPRBGetsol e e e e e e e e e e e e 96
XPRBGetsOSName o e 97
XPRBgetsostype e e e e e e e e e e 98
XPRBgettime e e e e e e e 99
XPRBgetvarlink e e e e 100
XPRBgetvarname o e e e e e e e e e e e e e e e e e 101
XPRBgetvarrng o e e e e e e e e e e e e e 102
XPRBgetvartype o e 103
XPRBGetversion o i e e e e e e e e e e e e e 104
XPRBgetXPRSProb o e e e e e 105
XPRBINIt . . e e e e e e e e e e e e e e e 106
XPRBloadbasis o e e e e e e e e e e e 107
XPRBloadmat e e e e e e 108
XPRBloadmipsol e e e e e 109
XPRBmMaxim o e e e e e e e e e e e e e e e e e 110
XPRBMINIM . . o . e 111
XPRBNEWaArrsUM o i et e 112
XPRBNeWarrvar o o i e 113
XPRBNEWCr o e e e e e e e e e e e e e e e e e e 114
XPRBnewcut e e e e e e e e e e e e e 115
XPRBnewcutarrsum L e e e e e e e e e e e e e e e e 116
XPRBNeWCUTPreC . . . s s e 117
XPRBNeWCULSUM o e e et e e e e e e e e e e e e e e e e e 118
XPRBnewidxset i e e e e e e e e 119
XPRBNnewname o e e e e e e e e e e e e e e e e e e 120
XPRBNEWPIEC it i i e e e e e e e e e e e e e e e e e e 121
XPRBnewprob e e e e e e e e e e 122
XPRBNEWSOS o it it i e 123
XPRBNEWSOSIC . . . o ot o i e 124
XPRBNEWSOSW . . . ot i et e 125
XPRBNEWSUM . . . o . o e e e e e e e e e e e e e e e e e 126
XPRBNEWVAr o o o e 127
XPRBprintarrvar o e 128
XPRBprintctr e e e e e e e e e e e 129

Contents

(©2009 Fair Isaac Corporation. All rights reserved. page iii

XPRBprintcut o e e e e e e e e 130

XPRBprintf . . . e e e e e e e e e e e 131
XPRBprintidxset e e e e e e e e e e e e e 132
XPRBprintobj o e e e e e e e 133
XPRBprintprob e e e e e e e e e e 134
XPRBPIiNTSOS o e e e e e e e e e e e e e e e e e e 135
XPRBpPrintvar e e e e e e e e e e e 136
XPRBreadarrlinech e e e e e e e 137
XPRBreadlinech i e e e e e e e e e 139
XPRBresetprob e e e e e e e e e e e e 141
XPRBsavebasis i e e e e e e e e e e e 142
XPRBsetarrvarel e e e e e e e e 143
XPRBsetcolorder o i e e e e e e e e e e e e e 144
XPRBsetctrtype o e e e e e e e e e e e 145
XPRBsetcuUtid o o e e e e e e e e e e e e e e e e 146
XPRBsetcutmode e e e e e e e e 147
XPRBsetcutterm e e e e e e e e e e e e e e e e 148
XPRBsetcuttype o e e e e e e e e e 149
XPRBsetdecsign i i i e e e e e e e e e e e e e e 150
XPRBsetdelayed e e e e e e e 151
XPRBsetdictionarysize e e e e e e e e e e 152
XPRBseterrctrl i o e e e e e e e e e e e e e e e 153
XPRBsetindicator i i i e e e e e e e e e e e 154
XPRBsetlb . . . o o e e e e e e e e e e e e 155
XPRBsetlim o e e e e e e e e e e e e e 156
XPRBsetmodcut e e e e e e e e e e e e e e e e 157
XPRBsetmsglevel e e e e 158
XPRBsetobj e e e e 159
XPRBsetgterm e e e e e e e e 160
XPRBsetrange e e e e e e e e e e e e e e 161
XPRBsetrealfmt e e e e e e 162
XPRBsetsense e e e e e e e e e e e e e e e e 163
XPRBSEtSOSAIr . . . v i i e e e e e e e e e e e e e e e e e 164
XPRBsetterm e e e e e e e e e e e e e 165
XPRBsetub e e e e e e e e e e e e 166
XPRBsetvardir o i e e e e e e e e e e e e e e e e e e 167
XPRBsetvarlink e e e e e e e e e e 168
XPRBsetvartype e e e e e e e e e e 169
XPRBSOIVE . . o e e e e e e e e e e e 170
XPRBstartarrvar e e e e e e e e e e e e e e e e e e e 171
XPRBSYNC . . . o e e e e e e e e e e e e e e e e e e e 172
XPRBWritedir e e e e e e e e e e e e e e e e 173
BCL in C++ 174
5.1 Anoverview of BCLIN G+ o o vt e e e e e e e e e e e e e e e e 174
5.1.1 Example e e e e e e e e e e e 174
51.2 QCQPExample o o e e e e e e 178
5.1.3 Errorhandling e 179

5.2 C++classreference o i i i e e e e e e e e e 181
XPRB . . e e e e e e e 183
getTime e e e e e 183

getVersion L e e e e e e e e e e e e e e e 183

NIt . o s e e e e e e e e e e e e e 184
setColOrder i e e e e e e e e e e 184
setMisglevel e e e e 185

Contents

(©2009 Fair Isaac Corporation. All rights reserved. page iv

setRealFmt e e e e e e e e e e e 185

XPRBDaASIS .« o v o o e e e e e e e e 187
XPRBbasis. i e e e e e e 187
getCRef L e e e e 187
isValid . . . o e e e e e e e 187
FESEt e e e e e e e e e e e e e e 188

XPRBCtr . . . o e e e e e e e 189
XPRBCr & . o e e e e e e e e 190
add L e e e 191
addTerm . . . e e e e e e 191
delTerm . . . o e e e e e 192
getACt. . . . L e e 192
getCRef . . . L e e e 193
getDual e e e e 193
getindicator 193
getindVar L e e e e e 194
getName L e e e 194
getRange e e e e e e e 194
getRangel e 195
getRangelU o e 195
getRHS e 195
getRNG e e 195
getROWNUM o e e e e e e e e 196
getSlack L e e e e 196
getType . . . o e e e e e e e e e e 197
isDelayed e e 197
isindicator e e e e e e 198
iISModCut e e e e e e e e e e e e 198
isValid . . . o e e e e e 198
PNt . . . e e e e e e e e e e e 198
=T = 199
setDelayed e e e 199
setindicator e e e e 199
setModCut e e e e 200
setRange e 201
setTerm e e e e e e e e e e e e 202
SetType . . . L e e e e e e 202

XPRBCUL . . . o e e e e e e e e e e e 204
XPRBcUt e 205
add . L e e e 205
addTerm . . . e e e e e e e 206
delTerm . . . o o e e e e e 206
getCRef e e e 206
getlD . .. e e e 207
getRHS . . . e e e e 207
getType . . . o e e e e e e e e e 207
isValid . . . o e e e e e e e e e 207
PriNt . . . e e e e e e e e e e e e e 208
FeSet . . . L L e e e e e e e e e e 208
setlD . . . e e 208
setTerm . . . L e e e e e e e e e e e e e e e e e 209
setType . . . o e e e e 209

XPRBEXPI . v o v i e s e 210
XPRBEXPI & v i e 211
add . e e 212

Contents (©2009 Fair Isaac Corporation. All rights reserved. page v

addTerm e e e e e e e e e e e e e e e 212

ASSIgN .« . L e e e e e e e e e e e e e e e e e e 212
delTerm o e e e e e e 213
getSol . . . L e e e e 213
MUl e e e e e e e e e e 213
7= o 214
setTerm e e e 214
] 1 215
XPRBINdexXSet i i i e e e e e e e e e e e e e e e 216
XPRBIindexSet e e e e e e e 216
addElement e e e 217
getCRef e e e 217
getindex L e e e 217
getindexName L e e 218
getName e e e 218
getSize . . . L e e e 218
isValid e e e e e e e e e e 219
T 0 219
1= = 219
XPRBprob e e e e e 220
XPRBprob e e e e e e e e e e e 222
addCuts L e e e e 222
cearDir . . . e e e e e e e e e 223
delCtr . . . o e e e e e 224
delCut o e e e e 224
delSos . . . e e e e 224
exportProb L e 224
getCRef e e e 225
getCtrByName e e e e e e e e e e e 225
getindexSetByName 226
getLPStat e 226
getMIPStat e e 227
getName L e e e 227
getNumllS e e e e e e e 227
getObjVal e 228
getProbStat 228
getSense e e e e e e e 228
getSosByName e e 229
getVarByName e e e e e e e 229
getXPRSprob e e e e 230
l0adBasis i e e e e e e e e e e e e e 230
loadMat e e e e e e e e 231
loadMIPSOl e e e e 231
MAXiM . o o o e 232
MINIM . . L e 232
NEWCEr . . . e e e e e e e e e e e e e e e 233
NEeWCUL e e e e e e e e e e e e e e e 234
newlndexSet e e e e e e e 235
NEWSOS . . vt i i e 235
NEWVAr o e e e e e e e e e e e e e e e e e e e 236
PNt . . . o e e e e e e e e e 237
printObj e 237
=T = 237
saveBasis L L e e e e 238
setColOrder e e e e e 238

Contents

(©2009 Fair Isaac Corporation. All rights reserved. page vi

setCutMode e e e e
setDictionarySize e e e e
setMisglevel e e e e e
SetOb] . . . e e e e
setRealFmt e e e e
setSense e e

YN o i e
WIHItEDIr o o e e e e e e e e e e e e e e e e e e e

XPRBrelation o e e e e e e e e e e e e e

XPRBrelation o e e e e e e e e e e e
getType e e e e e

XPRBSOS . . . i i i e

XPRBSOS i i e e e e e e e e e e e e e e e e e
add . L e e e e e e
addElement e e e e e
delElement e e e e e e e e e e
getCRef L e e e
getName e e e e e e e e e

PriNt . . . e e e e e e e e e e e e e
SEtDIr . . . e e e e e e e e e e e e e e

XPRBVAr . . . e e e e e e e e e e e e e e e e

6 BCLinJava

XPRBVaAr . . . e e e e e e e e e e e e e
X o e e e e e
getColNuUmM . . . o o e e e e
getCRef e e e
getlB . . . e e e e e e e e e e e e e
getlim . .. e e e
getName e e e e
getRCoSt L e e e
getRNG e
getSol . . . e e
getType . . . o e e e e e e
getUB e e e e e

SEtUB . . L e e e e e e e e e e e e e

6.1 Anoverview of BCLINJavat v v i e e e e e e e e e e e e e e e

6.1.1
6.1.2
6.1.3

Example e e e e e e e
QCQP Example e e e e e e e
Error handling L L e

6.2 Javaclassreference i e e e e e e e e e e e

Appendix

A BCL error messages

270

Contents

(©20009 Fair Isaac Corporation. All rights reserved. page vii

B Using BCL with the Optimizer library 274

B.1 Switching between libraries e 274
B.1.1 BCL-compatible Optimizer functions 274

B.1.2 Incompatible Optimizer functions 275

B.2 Initialization and termination 275
B.3 Loadingthematrix e e e 276
B.4 Indices of matrixelements L e e e 277
B.5 Using BCL-compatible functions 277
B.6 Using the Optimizer with BCL C++ o i i i et e e e e e e e 279
B.7 Using the OptimizerwithBCLJava it 280

C Working with cuts in BCL 283
Cl EXample e e e e e e e e e e 284
C.2 C++versionoftheexample e 285
C.3 Javaversionoftheexample e e 285
Index 287

Contents (©20009 Fair Isaac Corporation. All rights reserved. page viii

Chapter 1
Introduction

1.1 An overview of Xpress-BCL

The Xpress-BCL Builder Component Library provides an environment in which the Xpress user
may readily formulate and solve linear, mixed integer and quadratic programming models. Using
BCL's extensive collection of functions, complicated models may be swiftly and simply
constructed, preparing problems for optimization. Not merely limited to specific model
construction, however, BCL's flexibility makes it the ideal engine for embedding in custom
applications for the construction of generic modeling software. In combination with the
Xpress-Optimizer, the two form a powerful combination.

Model formulation using Xpress-BCL is constraint-oriented. Such constraints may be built up
either coefficient-wise, incrementally adding linear or quadratic terms until the constraint is
complete, or through use of arrays of variables, constructing the constraint through a scalar
product of variable and coefficient arrays. The former method allows for easier modification of
models once constructed, whilst the latter enables swifter construction of new constraints.

BCL supports the full range of variable types available to users of the Xpress-Optimizer:
continuous, semi-continuous, binary, semi-continuous integer, general and partial integer
variables, as well as Special Ordered Sets of types 1 and 2 (SOS1 and SOS2). With additional
functions for specifying directives to aid the global search, BCL enables preparation of every
aspect of complicated (mixed) integer programming problems.

To complement the model construction routines, BCL supports a number of functions which allow
a completed model to be passed directly to the Xpress-Optimizer, solved by the optimizer, and
solution information reported back directly from BCL. For situations where the BCL solution
functions do not provide enough capability to handle a particular user’s requirements, problems
may be manipulated using the Xpress-Optimizer library functions. Such close interactivity
between BCL and the Xpress-Optimizer make these two libraries a perfect partnership.

BCL also supports a number of functions allowing easy input and output of model and solution
data. In addition to a set of useful print functions, other functions also enable the export of
constructed models as matrix files in a number of industry standard formats.

1.2 Note for Optimizer library users

BCL functions cover all aspects of modeling, and perform simple optimization tasks without
making reference to the problem representation (matrix) used by the underlying solution
algorithms. The more advanced Optimizer library user may nevertheless wish to access the
problem matrix directly. It is possible to use all Optimizer library functions with the matrix

BCL Reference Manual (©20009 Fair Isaac Corporation. All rights reserved. page 1

generated by BCL. To this end, BCL provides several functions which specifically relate to the
matrix representation.

The function xPrRB1oadmat explicitly transforms the constraint-wise representation in BCL into
the matrix representation required by the Optimizer library. It is usually not necessary to call this
function because BCL automatically carries out this transformation whenever required.

The functions xPRBgetcolnum and XxPRBget rownum return the column and row indices
associated with BCL variables and constraints respectively. While loading the matrix with a call to
¥PRBloadmat, all variables that do not occur in any constraint and all empty constraints are
ignored and variable and constraint indices are updated correspondingly (with negative indices
indicating that a variable or constraint is not part of the active matrix in the Optimizer).

It should be stressed that BCL, and thus the arrays storing references to problem variables, does
not keep track of any changes to the matrix occurring during the solution procedure within the
Optimizer. This implies that if linear presolve or integer preprocessing is used, the correct solution
information is available only after the postsolve has been carried out. This is usually done
automatically if the solution algorithm terminates correctly (see the description of xPrREsc1ve in
Chapter 4 for details).

If the matrix is altered directly with Optimizer library functions such as XxPRSaddrows or
XPRSchgcoef it is not possible to retrieve the modifications in the BCL model. In order to
maintain a coherent status, any such modification has to be carried out in BCL, followed by a call
to function XxPRBloadmat.

Appendix B explains in more detail how to use Optimizer library functions within a BCL program.
Interested users are directed there for details

1.3 Structure of this manual

The main body of the manual is essentially organized into two parts. It begins in Chapter 2, with
a brief overview of common BCL functions and their usage, covering model management,
construction, solution and the output of information following optimization. These ideas are
extended in Chapter 3, to cover some of the more advanced or less well-known features of the
library. The use of index sets, special ordered sets and quadratic programming are all covered
here.

Following the first two chapters, the remainder forms the main reference section of the manual.
Chapter 4 details all functions in the library alphabetically, enabling swift access to information
about function syntax and usage, accompanied by examples. This is followed in Chapter A by a
list of BCL error and return codes. An overview of usage of BCL with the Xpress-Optimizer library
and of the C++ and Java interfaces form the Appendices to the manual.

1.4 Conventions used

Throughout the manual standard typographic conventions have been used, representing
computer code fragments with a fixed width font, whilst equations and equation variables
appear in jtalic type. Where several possibilities exist for the library functions, those with C syntax
have been used, and C style conventions have been used for structures such as arrays etc. Where
appropriate, the following have also been employed:

e square brackets [...] contain optional material;

e curly brackets {...} contain optional material, of which one must be chosen;

Introduction (©20009 Fair Isaac Corporation. All rights reserved. page 2

e entities in jtalics which appear in expressions stand for meta-variables. The description
following the meta-variable describes how it is to be used;

¢ the vertical bar symbol | is found on many keyboards as a vertical line with a small gap in the
middle, but often confusingly displays on screen without the small gap in the middle. In
UNIX it is referred to as the pipe symbol. Note that this symbol is not the same as the
character sometimes used to draw boxes on a PC screen. In ASCII, the | symbol is 7C in
hexadecimal, 124 decimal.

Introduction (©20009 Fair Isaac Corporation. All rights reserved. page 3

l. Modeling with BCL

Chapter 2
Modeling with BCL

2.1 Problem handling

2.1.1 Initialization and termination

Prototypes for all BCL functions are contained in the header file, xprb.h, which needs to be
included at the top of any program which makes BCL function calls. The first stage in the model
building process is to initialize BCL, either explicitly with a call to xPrBinit or implicitly by
creating a new problem with function xPrRBnewprob (see below). During its initialization BCL
also initializes the Xpress-Optimizer, so if the two are to be used together, a separate call to
XPRSinit is unnecessary. The initialization function checks for any necessary libraries, and runs
security checks to determine license information about your Xpress installation.

Once models have been constructed and BCL routines are no longer needed, the function
¥PRBfree may be called to reset BCL.

2.1.2 Problem creation and deletion

BCL has an object-oriented design. A mathematical model is represented in BCL by a problem
that contains a collection of other objects (variables, constraints, index set etc). Every BCL
function takes as the first argument the object it operates on.

A problem reference in BCL is a variable of type xPRBprob. A problem is created using the
xPRBnewprob function, additionally providing a problem name, in the following way:

XPRBprob prob;

prob = XPRBnewprob ("MyProb");

The problem reference, prob, is subsequently provided as the first argument to functions
operating on the problem.

Once use of a particular problem has ended, the problem should be removed using
¥PRBdelprob, freeing associated resources. It should be noted that resources associated with
problems are not released with a call to xPrREfree, so failure to explicitly delete each problem
may result in memory leakage. It is also possible to delete just the solution information stored by
BCL after an optimization run (including all problem-related information loaded in
Xpress-Optimizer), if the definition of the problem is to be kept for later re-use but its solution
data is not required any longer (function xPRBresetprob).

Note that for every BCL problem of type XPRBprob exists a corresponding Xpress-Optimizer
problem (type xPRSprob). Although it is usually not necessary to access the optimizer problem

(©20009 Fair Isaac Corporation. All rights reserved. page 5

Initialize a new model XPRBprob pbl;

pbl = XPRBnewprob ("Probleml");

Delete problem definition XPRBdelprob (pbl) ;

Delete solution information XPRBresetprob (pbl) ;
Load problem matrix XPRBloadmat (pbl) ;

Fix column ordering XPRBsetcolorder (pbl,1);
Get problem name XPRBgetprobname (pbl) ;

Figure 2.1: Creating, accessing and deleting problems in BCL

directly in BCL programs, this may be required for certain advanced uses (see Appendix B for
more detail).

2.1.3 Other basic functions

Other functions are also useful for problem handling and manipulation. With
XPRBgetprobname, the name for a particular problem specified by a reference may be obtained.

The function xPrRB1oadmat is really only needed by Optimizer library users. It explicitly
transforms the BCL problem into the matrix representation in the Optimizer, passing the problem
directly into the Optimizer. Usually this is done automatically by BCL whenever required, but it
may be necessary to load the matrix without optimizing immediately, e.g. so that an advance
basis can be loaded before starting the optimization. The matrix generated by BCL remains
unchanged in repeated executions of the program; the column ordering criterion may be
changed by setting the ordering flag to 1 (function xPrRBsetcolorder) before the matrix is
loaded.

2.1.4 Input and output settings

BCL supports a number of functions for directing the input and output of a program. Those
functions are independent of the particular problem and consequently do not take the problem
pointer as an argument or may be used with a NULL argument. They may be called prior to the
creation of any problem using xPRBnewprob, and even prior to the initialization of BCL. Any
other BCL function will result in an error if it is executed before BCL has been initialized.

Printout of BCL status information, warnings or error messages may be turned off (function
¥PRBsetmsglevel). With function xPRrREde fcbmsg, the user may define the message callback
function to intercept all output printed by BCL (including messages from the Optimizer library
and output from the user’s program printed with function xprBprint £, the latter not being
influenced by the setting of the message print level). Section 3.5 in the next chapter shows an
example of a message callback.

The formating of real numbers used by the BCL output functions (including matrix export) can be
set with the function xPRBsetreal fmt.

For data input in BCL (using functions xPREBreadline and xPRBreadarrline), it is possible to
switch from the (default) Anglo-American standard of using a decimal point to some other
character, such as a decimal comma (XPREsetdecsign).

2.1.5 Error handling

By default, BCL stops the program execution if an error occurs. With function xPrRBseterrctr]
the user may change this behavior: the error messages are still produced but the user’s program
has to provide the error handling. This setting may be useful, for instance, if an BCL program is

Modeling with BCL (©20009 Fair Isaac Corporation. All rights reserved. page 6

Set number format XPRBsetrealfmt (prob, "%8.4f");

Set decimal sign XPRBsetdecsign(’,’);

Set printout level XPRBsetmsglevel (prob, 1) ;

Set error handling XPRBseterrctrl (0);

Error handling callback void myerror (XPRBprob my_prob, void smy_object, int num,

int type, const char xtxt);
XPRBdefcberr (prob, myerror, object) ;

Printing callback void myprint (XPRBprob my_prob, void *my_object, const char
*msgtext) ;
XPRBdefcbmsg (prob, myprint, object) ;

Get version number const char *version;

version = XPRBgetversion();

Figure 2.2: Input and output settings, and error handling in BCL

embedded into some other application or executed under Windows.

Error handling by the user’s program may either be implemented by checking the return values
of all BCL functions, or preferably, by defining a callback (with function xPrEdefcberr) to
intercept all warnings and errors produced by BCL. This function is not influenced by
¥PRBsetmsglevel, that is the user may turn off message printing and still be notified about any
errors that occur. Section 3.5 in the next chapter shows an example of an error callback.

When reporting problems with the software, the user should always give the version of BCL. This
information can be obtained with the function xPrBgetversion.

2.2 Variables

2.2.1 Basic functions

In BCL, variables are created one-by-one with a call to the function xPrBnewvar. These variables
may belong to multi-dimensional arrays declared within C. Since one-dimensional arrays of
variables are used as input to a number of functions, BCL also provides a specific object for this
purpose, the type XxPRBarrvar. This object stores a one-dimensional array of variables together
with information about its size. That means such an array of variables may be used as a
parameter to a function without having to specify its size separately. Details on specific functions
for creating and accessing variable arrays are given in the following Section 2.2.2.

The length of variable names (like the names of all BCL objects) is unlimited. If no name is
specified the system generates default names ("var" followed by an index). A name may occur
repeatedly and, if so, BCL starts indexing the name, commencing with an index of 0.

All types of branching directives available in Xpress can be set via the function xPrBsetvardir,
including priorities, choice of the preferred branching direction and definition of pseudo costs.
Bounds on variables are redefined by functions xPrRBsetub, XPRBset 1b, XPRBfixvar, and
¥PRBset 1im. Function xPREset 1im only applies to partial integer, semi-continuous and
semi-integer variables, setting the lower bound of the continuous part or the semi-integer lower
bound. Function xPrREgetbyname retrieves variables or arrays of variables via their name.
Information on variables can be accessed with function xPrRBgetvarname, XPRBgetvartype,
XPRBgetcolnum, XPRBgetbounds, and XPRBget 1 im. Function XPRBsetvartype changes the
variable type. Figure 2.3 gives an overview of functions related to the creation, update and
deletion of variables and arrays of variables.

Modeling with BCL (©20009 Fair Isaac Corporation. All rights reserved. page 7

Creating variables XPRBvar y, sl[4];
y = XPRBnewvar (prob, XPRB_PL, "y",1,10);
for (1i=0;1i<4;1i++)
s [i]=XPRBnewvar (prob, XPRB_UTI, "st",1,10);

Creating variable arrays XPRBarrvar avl, av2;
avl=XPRBnewarrvar (prob, 5,XPRB_SC, "al",0,7);
av2=XPRBstartarrvar (prob, 3, "az2");
XPRBapparrvarel (av2,vy);

XPRBsetarrvarel (av2,2,s([3]);
XPRBendarrvar (av2) ;

Accessing variables double ubd, 1lbd, lim;
XPRBgetvarname (y) ;
XPRBgetvartype (s[1]);
XPRBgetcolnum(av2[0]);
XPRBgetbounds (y, &1bd, &ubd) ;
XPRBgetlim(y, &lim) ;
XPRBsetvartype (avl[1l],XPRB_BV);

Accessing arrays XPRBgetarrvarname (av2) ;
XPRBgetarrvarsize (avl);

Delete a variable array XPRBdelarrvar (av2) ;

Find by name XPRBvar yl; XPRBarrvar al;

yl = XPRBgetbyname (prob, "y", XPRB_VAR) ;

al = XPRBgetbyname (prob, "al",XPRB_ARR) ;
Branching directives XPRBsetvardir (s[0],PR,1);

XPRBcleardir (prob) ;

Setting bounds XPRBsetlb (y,4);
XPRBsetub (s[0],9);
XPRBfixvar (av[2],6);
XPRBsetlim(y,5);

Figure 2.3: Functions for creation, update, deletion and access of variables within BCL

2.2.2 \Variable arrays

BCL provides a specific object for representing one-dimensional arrays of variables, as these are
used as input to a number of functions. Variable arrays can be created either in one go, with a
single function call to xPrREnewarrvar, or incrementally by copying single references to
previously defined variables into an array of type XPRBarrvar.

If a variable array is created by a call to xPrREnewarrvar, all of the variables in the array receive
the same type and bounds (these can be modified individually following creation). Otherwise, if
the array is being defined incrementally, any previously defined variables (including elements of
variable arrays) may be added to the array in an arbitrary order. In this case, the definition of the
array is started by indicating its model name and size in XPREstartarrvar and terminated by
¥PRBendarrvar. Entries can be positioned via xPrREsetarrvarel or simply placed at the first
available free position by xPrRBapparrvarel. For instance, assume we have defined four
continuous variables s[01,..., s[3] and a binary variable b. We may then wish to create an array
av with the following three elements: av[0] = b, av[1] = s[2],av[2] = s[0]. Regrouping
different variables this way into a single data structure may help render the formulation of
constraints or the access to information about model objects more transparent.

A variable may be copied into several arrays (function xPRBsetarrvarel or XxPRRapparrvarel),
but it is created only once as a variable or part of a variable array (using function xPRBnewvar or
XPRBnewarrvar).

Function xPRBgetbyname retrieves arrays of variables via their name. It is also possible to obtain
the name of an array (xPRBgetarrvarname) and its size, that is, the number of variables it
contains (XxPRBgetarrvarsize).

Modeling with BCL (©20009 Fair Isaac Corporation. All rights reserved. page 8

3
D oioSi <20 XPRBctr ctr

XPRBnewsum (prob, "S1", s, XPRB_L, 20) ; ctr = XPRBnewctr (prob,"S1",XPRB_L);
for (1=0;1<=3;1i++)
XPRBaddterm(ctr,s[i],1);
XPRBaddterm (ctr, NULL, 20) ;

3
Z,':o Dj-si=9
XPRBnewarrsum (prob, "S2",s,D, XPRB_E,9); ctr = XPRBnewctr (prob, "S2",XPRB_E) ;
XPRBaddarrterm(ctr,s,D);
XPRBaddterm (ctr,NULL, 9) ;
Sso+Do <y (so —y < —Do)
XPRBnewprec (prob, "Prc",s[0],D[0],v); ctr=XPRBnewctr (prob, "Prc", XPRB_L) ;

XPRBaddterm(ctr,s[0],1);
XPRBaddterm(ctr,y,-1);
XPRBaddterm (ctr, NULL,-D[0]) ;
Figure 2.4: Constraint definition using the constraint functions provided by BCL (left column) or by adding
coefficients (right column)

2.3 Constraints

2.3.1 Basic functions

Constraints are created either by a call to a specialized constraint function (see Section 2.3.2) or
by subsequently adding all the desired terms to a constraint. In the latter case, a new constraint is
started with function xPrBnewct r by indicating its type and (optionally) its name, variable and
constant terms are added with functions xPRRaddterm, XPRBsetterm and XPRBaddarrterm.
Function xPrEaddterm adds the indicated coefficient value to the coefficient of the variable,
whereas xPRBsetterm overrides any previously defined coefficient for the variable in the
constraint. It is also possible to add an entire array of variables at once to a constraint, together
with the corresponding coefficients (function xPrRBaddarrterm). Figure 2.4 gives some examples
of constraint creation.

Since all functions for constraint definition identify the corresponding constraint via its model
name, constraint definitions may be nested.

The length of constraint names is unlimited. If no name is specified the system generates default
names ("CTR" followed by an index). A name may occur repeatedly and if so, BCL starts indexing
the name, commencing with an index of 0. Variables and variable arrays used in the definition of
a constraint must be defined previously. Any other variables not occurring in this constraint may

be defined later in the model.

After a constraint has been defined, its type may be changed to a range constraint by indicating
the lower and upper bounds in a call to function xPREset range. Function xPREBgetbyname
retrieves constraints via their name.

A coefficient can be deleted with xPrRBde1term, or an entire constraint definition by
XPRBdelctr. Itis possible to retrieve the constraint name (XxPRBget ct rname), the matrix row
index (xPREBget rownum), the constraint type (xPrREget ctrtype), the range values
(xPrRBgetrange, only applicable to ranged constraints) and right hand side value (xPrREget rhs),
as well as changing the constraint type (xPRBsetctrtype). A constraint can be transformed into
a model cut (xPRBsetmodcut) and function xPRBgetmodcut indicates whether a constraint has
been defined as a model cut.

In addition to the functions for handling linear constraints listed here, BCL also lets you define
quadratic constraints for the formulation of QP and QCQP problems, see Section 3.4 for further
detail.

Modeling with BCL (©20009 Fair Isaac Corporation. All rights reserved. page 9

Set objective function XPRBctr c;
XPRBsetobj (prob, c);

Set objective sense XPRBsetsense (prob, XPRB_MAXIM) ;
Access objective sense int dir;
dir = XPRBgetsense (prob) ;
Locate constraint XPRBctr c;
c = XPRBgetbyname (prob, "Suml", XPRB_CTR) ;
Define range constraint XPRBsetrange (c,1,5,15);
Delete a constraint XPRBdelctr (c) ;
Delete a constraint term XPRBvar y;

XPRBdelterm(c,vy);

Accessing constraints double bdl, bdu;
XPRBgetctrname (c) ;
XPRBgetrange (¢, &bdl, &bdu) ;
XPRBgetrownum(c) ;
XPRBgetctrtype (c);
XPRBsetctrtype (c, XPRB_L) ;
XPRBgetmcut (c) ;
XPRBsetmcut (c, 1) ;

Figure 2.5: Defining the objective function and functions for modifying and accessing constraints

2.3.2 Predefined constraint functions

Besides the functions described above for defining constraints incrementally, BCL also provides
some predefined constraint functions for formulating constraints ‘in one go’. The function
¥PRBnewarrsum creates a standard linear constraint with the indicated coefficients. The function
¥PRBnewsum creates a straight sum of the variables with each coefficient set to one. The function
XPRBnewprec creates a so-called precedence constraint in which a variable plus a constant are
less than or equal to a second variable (typically, this relation is established between start time
variables in scheduling problems, hence the name).

2.3.3 Objective function

The objective function (Figure 2.5) may be interpreted as a special type of constraint. It is defined
like any other constraint, usually choosing the constraint type xPRB_N. But it is also possible to
take a constraint of any other type. In the latter case, the variable terms of the constraint form
the objective function but the equation or inequality expressed by the constraint also remains
part of the problem. The objective function is declared via functions xPrREsetob . If a different
objective has been defined previously, it is replaced by the new choice.

The sense of the objective function can be set to be minimization (default) or maximization with
function xPrREsetsense. Function xPRBget sense returns the sense of the objective function.

All solution functions (xPRRsolve, XPRBminim, XPRBmaxim) and the problem output with
¥PRBexportprob require the objective to be defined. If the sense of the optimization has not
been set, the problem is minimized by default.

2.4 Solving and solution information

As well as enabling model definition, BCL also provides common solving and solution information
functions, as summarized in Figure 2.6. For more advanced tasks the user may employ the
corresponding Optimizer library functions, once the matrix has been loaded into the Optimizer
(function xPrRR1oadmat). However, only the BCL functions can reference the BCL model objects
when retrieving the solution information.

Modeling with BCL (©2009 Fair Isaac Corporation. All rights reserved. page 10

Solve active problem XPRBsolve (prob, "dg") ;
XPRBminim (prob, "pl") ;
XPRBmaxim (prob,"");

Status information XPRBgetprobstat (prob) ;
XPRBgetlpstat (prob) ;
XPRBgetmipstat (prob) ;

Get objective value XPRBgetobjval (prob) ;

Solution information XPRBvar y; XPRBctr c;
XPRBgetsol (y); XPRBgetdual (c);
XPRBgetrcost (y); XPRBgetslack (c);
XPRBgetact (c) ;

Ranging information XPRBgetvarrng (y, XPRB_UCOST) ;
XPRBgetctrrng (c, XPRB_LOACT) ;

Advanced bases XPRBbasis b;
b=XPRBsavebasis (prob) ;
XPRBloadbasis (b);
XPRBdelbasis (b) :

Figure 2.6: Solving and solution information

Before any solution function is called, the objective function must be selected using xPRBsetob.
The function xPrRBso1ve also requires the sense of the objective to be set, that is, whether to
minimize (default) or to maximize the objective. All solution functions xPRBsolve, XPRBminim,
and ¥xPRBmaxim can be parameterized to choose the type of solution algorithm. Once the
problem has been solved, the following solution information can be obtained: the optimal
objective function value (xPrRRgetobival), values for all the problem variables (xPrRERgetsol),
slack values (xPREBgetslack), reduced costs (XxPRBget rcost), constraint activity (XPRBgetact),
and dual values (xPrREgetdual). It is also possible to obtain ranging information for variables
(xPrRBgetvarrng) and constraints (xPRBget ct rrng) after solving an LP problem.

If the objective function value or solution information for variables or constraints is accessed
during the optimization (for instance from Xpress-Optimizer callbacks) the solution information
in BCL needs to be updated with a call to xPrRBsync with the parameter XPRB_XPRS_SOL (see
Appendix B for more detail).

Before solving or accessing solution information it may be helpful to check the current problem
and/or solution status (using functions xPrREgetprobstat, XPREBget lpstat and
¥PRBgetmipstat). It may happen that a variable defined in the model does not appear in any
constraint, or a constraint only contains 0-valued coefficients so that is ignored when loading the
problem into the Optimizer. In these cases the object’s column or row index is negative and no
solution information can be obtained.

With BCL, it is also possible to save the current basis of a problem in memory and reload (and/or
delete) it after some changes have been carried out to the problem. These changes may include,
for instance, the addition or deletion of variables and constraints.

For more advanced functionality using Optimizer library functions refer to the Optimizer
Reference Manual.

2.5 Example

The following example is an extract of a scheduling problem: four jobs with different durations
need to scheduled with the objective to minimize the makespan (= completion time of the last
job). The complete model also includes resource constraints that are omitted here for clarity’s
sake. For every job j its duration DUR; is given. We define decision variables startj representing
the start time of jobs and binary variables delta;: indicating whether job j starts in time period t
(deltaj: = 1). We also define a variable z for the maximum makespan. The makespan can be

Modeling with BCL (©2009 Fair Isaac Corporation. All rights reserved. page 11

expressed as a ‘dummy job’ of duration 0 that is the successor of all other jobs (constraints
Makespan in the model below). We also formulate a precedence relation between two jobs
(constraint Prec). The start time variables need to be linked to the binary variables (constraints
Link). And finally, the binary variables are used to express that every job has a unique start time
(constraints One).

2.5.1 Model formulation using basic functions

#include <stdio.h>
#include "xprb.h"

#define NJ 4 /* Number of jobs =/

#define NT 10 /* Time limit */

double DURI[] = {3,4,2,2}; /+ Durations of jobs */
XPRBvar start[NJ]; /* Start times of jobs =/
XPRBvar delta[NJ] [NT]; /* Binaries for start times x/
XPRBvar z; /* Max. completion time x/
XPRBprob prob; /+ BCL problem =/

void jobs_model (void)
{
XPRBctr ctr;

int j, t;

prob=XPRBnewprob ("Jobs") ; /+ Initialization =/

for (3=0; j<NJ; j++) /* Create start time variables x/
start[j] = XPRBnewvar (prob, XPRB_PL, "start", 0, NT);

z = XPRBnewvar (prob, XPRB_PL, "z", 0, NT); /x Makespan var. =/

for (§=0; J<NJ; j++) /* Declare binaries for each job «/
for (t=0; t<(NT-DUR[J]+1);t++)

delta[j] [t] = XPRBnewvar (prob, XPRB_BV, "delta", 0, 1);
for (3=0; j<NJ; j++) /* Calculate max. completion time */

XPRBnewprec (prob, "Makespan", start([j], DUR[J], z);
/* Precedence relation betw. jobs =/
XPRBnewprec (prob, "Prec", start([0], DUR[O0], start[2]);

for (3=0; J<NJ; j++) /+ Linking start times & binaries x/
{
ctr = XPRBnewctr (prob, "Link", XPRB_E);
for (t=0; t<(NT-DUR[J]+1);t++)
XPRBaddterm(ctr, deltalj]l[t], t+l1);
XPRBaddterm(ctr, start[j]l, -1);
}

for (j=0; J<NJ; j++) /* Unique start time for each job «/
{

ctr = XPRBnewctr (prob, "One", XPRB_E);

for (t=0;t<(NT-DUR[Jj]+1);t++) XPRBaddterm(ctr, deltal[j]l[t], 1);
XPRBaddterm (ctr, NULL, 1);

}

ctr = XPRBnewctr (prob, "OBJ", XPRB_N);
XPRBaddterm (ctr, z, 1);
XPRBsetob] (prob, ctr); /* Set objective function x/
/* Upper bounds on start time variables x/

for (j=0; j<NJ; j++) XPRBsetub (start[j], NT-DUR[]J]+1);
}

2.5.2 Using variable arrays

In the subsequent code, we replace the variables start; and delta;; by arrays of variables start and

Modeling with BCL (©2009 Fair Isaac Corporation. All rights reserved. page 12

delta;. Note that the variables can still be addressed in the same way as before. The main

advantage of this formulation is that now some of the predefined constraint functions may be

used in the model definition. Changes to the previous version are highlighted in bold.

#include <stdio.h>
#include "xprb.h"

#define NJ 4 /* Number of jobs =*/
#define NT 10 /* Time limit */

double DUR[] = {3,4,2,2}; /* Durations of jobs */
XPRBarrvar start; /% Start times of jobs x/
XPRBarrvar deltal[NJ]; /+ Sets of binaries =/
XPRBvar z; /* Maxi. completion time x/
XPRBprob prob; /* BCL problem */

void jobs_model_array (void)
{

XPRBctr ctr;

int j,t;

double c[NT];

prob=XPRBnewprob ("Jobs") ; /* Initialization =/

/* Create start time variables x/
start = XPRBnewarrvar (prob, NJ, XPRB_PL, "start", 0, NT);
z = XPRBnewvar (prob, XPRB_PL, "z", 0, NT); /* Makespan var. =/

for (3=0; j<NJ; j++) /* Set of binaries for each job =/
delta[j] = XPRBnewarrvar (prob, (NT-(int) (DUR[]Jj])+1), XPRB_BV,
"delta", 0, 1);

for (3J=0; J<NJ; j++) /* Calculate max. completion time */
XPRBnewprec (prob, "Makespan", start([j], DUR[J], z);

/* Precedence relation betw. jobs x/
XPRBnewprec (prob, "Prec", start([0], DUR[O0], start([2]);

for (3=0; J<NJ; j++) /* Linking start times & binaries */
{
ctr = XPRBnewctr (prob, "Link", XPRB_E);
for (t=0; t<(NT-DUR[J]+1);t++) clt]l=t+1;
XPRBaddarrterm(ctr, deltalj]l, c);
XPRBaddterm(ctr, start[j], -1);
}
/* Alternative constraint formulation:
for (j=0; J<NJ; j++)
{
ctr = XPRBnewsumc (prob, "Link", deltalj], 1, XPRB_E, 0);
XPRBaddterm(ctr, start[j], -1);
}
*/

for (j=0; J<NJ; j++) /* Unique start time for each job «/
{

ctr = XPRBnewctr (prob, "One", XPRB_E);

for (t=0;t<(NT-DUR[]J]+1);t++) XPRBaddterm(ctr, deltal[j]l[t], 1);
XPRBaddterm(ctr, NULL, 1);

}

ctr = XPRBnewctr (prob, "OBJ", XPRB_N);
XPRBaddterm (ctr, z, 1);
XPRBsetob]j (prob, ctr); /* Set objective function x/

/* Upper bounds on start time variables «/

for (j=0; j<NJ; j++) XPRBsetub (start[j], NT-DUR[J]+1);
}

The set of constraints Link (linking start time variables and binaries) can also be formulated using

Modeling with BCL

(©2009 Fair Isaac Corporation. All rights reserved.

page 13

arrays and the constraint relation xPrREnewarrsum. These arrays are created by copying
references to previously defined variables. In the example below, they serve only to create this set
of constraints so that there is no need for storing them. If these arrays were to be used later on,
they should be given different names, perhaps using an array av[NJ].

Note that the example below works with both formulations of the model, using single variables
or arrays of variables for start times start and indicator variables delta.

for (3=0; j<NJ; j++)
{
double ind[NT];
v = XPRBstartarrvar (prob, NT-(int) (DUR[J])+2, "v1");
/+ Define an array of size NT-DUR[J]+2 */
for (t=0;t<(NT-(int) (DUR[J])+1);t++)
{

XPRBapparrvarel (v, deltal[]j]l[t]); /+ Add a variable to v x/
ind[t]=t+1; /* Add a coefficient x/

}
XPRBapparrvarel (v, start[j]); /+ Add "start" variable */
XPRBendarrvar (v) ; /+ Terminate array def. */
ind[NT-(int)DUR[Jj]+1]1=-1; /+ Add another coeff. */

XPRBnewarrsum (prob, "Link", v, ind, XPRB_E, 0);
/+ Def. constraint using array v =*/
XPRBdelarrvar (v) ; /+ Free the allocated memory «*/

2.5.3 Completing the example: problem solving and output

We now want to solve the example problem and retrieve the solution values (objective function
and start times of all jobs). We do this with a separate function, jobs_solve. To complete the
program we write a main that calls the model definition and the solution functions.

void jobs_solve (void)
{

int statmip;

int 3J;

XPRBsetsense (prob, XPRB_MINIM) ;

XPRBsolve (prob, "g"); /* Solve the problem as MIP x/
statmip = XPRBgetmipstat (); /x Get the problem status =/
if ((statmip == XPRB_MIP_SOLUTION) ||
(statmip == XPRB_MIP_OPTIMAL))

{ /* An integer solution has been found x/
printf ("Objective: %g\n", XPRBgetobjval());
for (j=0; J<NJ; j++)
printf ("$s: %g\n", XPRBgetvarname (s[]j]), XPRBgetsol(s[3j]));
/+ Print out the solution for all start times */
}
}

int main(int argc, char xxargv)
{
jobs_model () ; /* Problem definition */
jobs_solve () ; /+ Solve and print solution =/
return 0;

}

If we want to influence the branch-and-bound tree search, we may try setting some branching
directives. To prioritize branching on variables that represent early start times the following lines
can be added to csolve before the solution algorithm is started.

for (3=0; J<NJ; j++)
for (t=0; t<NT-DUR[J]+1;t++)
XPRBsetvardir (delta[j][t], XPRB_PR, 10x(t+l));

Modeling with BCL (©2009 Fair Isaac Corporation. All rights reserved. page 14

/* Give highest priority to var.s for earlier start times «/

Modeling with BCL (©2009 Fair Isaac Corporation. All rights reserved. page 15

Chapter 3

Further modeling topics

3.1

Data input and index sets

BCL requires the user to read data into their own structures or data arrays by using standard C
functions for accessing data files. The functions xPrREreadarrline and XPRBreadline read
data from data files in the diskdata format (see the documentation of the module mmetc in the
Xpress-Mosel Language Reference Manual for details). The first function reads (dense) data
tables with all entries of the same type, the second reads tables with items of different types
(such as text strings and numbers). In particular, xPREreadline is well suited to read sparse data
tables that are indexed by so-called index sets. Roughly speaking, an index set is a set of items
such as text strings that index data tables and other objects in the model in a clearer way than
numerical values (for details refer to the Xpress-Mosel Reference Manual).

A new index set is created by calling function xPrREnewidxset. Set elements are added with
function xPrRBaddidxel. An element of a set can be retrieved either by its name
(xPrRBgetidxel) or by its order number within the set (using the function xPrREget idxelname).
A data item may be part of several index sets. Function xPrREget idxsetsize returns the current
size (i.e. the number of set elements) of an index set.

The definition of index sets may be nested, that is while reading a data file the user may fill up
several index sets at a time. The size of index sets grows automatically as required. The user sets
some initial size at the creation of the set, but if less elements are added the size returned by
XPRBgetidxsetsize will be smaller than this value and if more elements are added the size is
increased accordingly.

Data input from file FILE xdatafile;
char name[50];
double dval, dvals[5];
XPRBreadlinecb (XPRB_FGETS,datafile, 200, "T,d", name, &dval) ;
XPRBreadarrlinecb (XPRB_FGETS,datafile, 200, "d;",dvals, 5);

Create a new index set XPRBidx setl;

setl = XPRBnewidxset (prob, "Setl",100);
Add index to a set XPRBaddidxel (setl, "Probl");
Accessing index sets int size, ind;

ind = XPRBgetidxel (setl, "Prodl");
name = XPRBgetidxelname (setl, 14);
name = XPRBgetidxsetname (setl);
size = XPRBgetidxsetsize (setl);

Figure 3.1: Data input from file and accessing index sets: creation of sets, addition of elements, retrieving elements, and
the index set size.

(©2009 Fair Isaac Corporation. All rights reserved. page 16

3.1.1

Example

Taking the program example from the previous chapter, we now assume that we want to give
names to the jobs, such as ABC14, DE45F, GH91J99, KLMN789. We further assume that these
names, together with the durations, are given in a separate data file, durations.dat:

ABC14, 3
DE45F, 4
GH9IJ99, 2
KLMN789, 2

If data is read with function xPREreadline, it is possible to use comments (preceded by !) and
line continuation signs (&) in the data file. (Note that single strings and numbers may not be
written over several lines.) The input function also skips blanks and empty lines. If separator signs
other than blanks are used, the value 0 may be omitted in the data file (for instance, a data line
0, 0, 0 could aswell be written as, , or, using blanks as separators, 0 0 0). The following is
functionally equivalent to the contents of durations.dat:

ABC14, 3 ! productl, durationl
DE45F, & ! this line is continued
4 ! in the next line
GH9IJ99, 2 ! Dblanks are skipped
! as well as empty lines
KLMN789, 2

Separating the input data from the definition allows the same model to be rerun with different
data sets without having to recompile the program code. To accommodate data in this form the
model program must be written or edited appropriately. In the following program, a function for
data input is added to the code seen in the previous chapter. The space for the decision variable
arrays is allocated once the array sizes are known. Notice that we use the job names as the names
of the decision variables.

#include <stdio.h>
#include <stdlib.h>
#include "xprb.h"

#define MAXNJ 4 /% Maximum number of jobs x/
#define NT 10 /+ Time limit =/

int NJ=0; /+ Number of jobs read in x/
double DUR[MAXNJ]; /+ Durations of jobs x/
XPRBidxset Jobs; /+ Job names */

XPRBvar =*start; /* Start times of jobs */
XPRBvar *xdelta; /+ Binaries for start times =/
XPRBvar z; /* Max. completion time =/
XPRBprob prob; /* BCL problem =*/

void read_data (void)
{
char name[100];
FILE +datafile;
Jobs = XPRBnewidxset (prob, "jobs",MAXNJ) ;
/* Create a new index set */
datafile=fopen ("durations.dat","r");
/* Open data file for read access x/
while (NJ<MAXNJ) &&
XPRBreadlinecb (XPRB_FGETS, datafile, 99, "T,d", name, &DURI[NJ]))
{ /x Read in all (non-empty) lines up to the end of the file x/

XPRBaddidxel (Jobs, name) ; /* Add Jjob to the index set */
NJ++;

}

fclose (datafile); /+ Close the input file =/

printf ("Number of jobs read: %$d\n", XPRBgetidxsetsize (Jobs));
}

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 17

void jobs_model (void)
{
XPRBctr ctr;
int J,t;
/+ Create start time variables with bounds =/
start = (XPRBvar *)malloc (NJ * sizeof (XPRBvar));
if (start==NULL)
{ printf ("Not enough memory for ’start’ variables.\n");
exit (0); 1}
for (j=0; J<NJ; j++)
start[j] = XPRBnewvar (prob, XPRB_PL, "start", 0, NT-DUR[j]+1);
z = XPRBnewvar (prob, XPRB_PL, "z",0,NT) ; /* Makespan var. =/
/+ Declare binaries for each Jjob */
delta = (XPRBvar #**)malloc (NJ * sizeof (XPRBvarsx));
if (delta==NULL)
{ printf ("Not enough memory for ’'delta’ variables.\n");
exit (0); }
for (3=0; j<NJ; j++)
{
delta[]j] = (XPRBvar *)malloc (NT* sizeof (XPRBvar));
if(delta[j]==NULL
{ printf ("Not enough memory for ’delta_j’ wvariables.\n");

exit (0); 1}
delta[]j][t] = XPRBnewvar (XPRB_BV,
XPRBnewname ("delta%$s_%d", XPRBgetidxelname (Jobs, j),t+1),
0,1);
}
for (3=0; J<NJ; j++) /* Calculate max. completion time «*/

XPRBnewprec (prob, "Makespan", start[j],DUR[]], z);
/+ Precedence relation betw. Jjobs x/
XPRBnewprec (prob, "Prec", start [0],DUR[O0], start[2]);

for (3=0; J<NJ; j++) /* Linking start times & binaries «*/
{
ctr = XPRBnewctr (prob, "Link",XPRB_E) ;
for (t=0; t<(NT-DUR[J]+1);t++)
XPRBaddterm(ctr,deltal[j] [t],t+1);
XPRBaddterm(ctr, start[j],-1);
}

for (§=0; J<NJ; j++) /* Unique start time for each job «*/
{

ctr = XPRBnewctr (prob, "One",XPRB_E) ;

for (t=0;t<(NT-DUR[Jj]+1);t++) XPRBaddterm(ctr,deltal[j][t],1);
XPRBaddterm (ctr,NULL, 1) ;

}

ctr = XPRBnewctr (prob, "OBJ", XPRB_N) ;
XPRBaddterm(ctr,z,1);
XPRBsetob] (prob, ctr) ; /+ Set objective function x/

jobs_solve(); /+* Solve the problem x/
free(start);

for (3=0; j<NJ; j++) free(deltalj]l);
free(delta);

int main(int argc, char xxargv)

{

prob=XPRBnewprob ("Jobs") ; /+ Initialization x/
read_data () ; /+ Read data from file x/
jobs_model () ; /* Define & solve the problem =/

return 0;

}

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 18

XPRBsos setl, set2;
XPRBarrvar s;

Immediate (ref. constraint) XPRBctr c;
set1=XPRBnewsosrc (prob, "sA",XPRB_S2, s, c) ;

Immediate (coefficients) double C[] = 1,2,3,4;
set2=XPRBnewsosw (prob, "sB",XPRB_S1,s,C);

Consecutive definition set2=XPRBnewsos (prob, "sB", XPRB_S1) ;
XPRBaddsosarrel (set2,s,C);

Delete set definition XPRBdelsos (set2);

Accessing sets XPRBaddsosel (set2,s[2]1,4,5);

XPRBdelsosel (setl,s[0]);

XPRBgetsosname (setl) ;

XPRBgetsostype (set2) ;
Figure 3.2: Defining and accessing SOS: immediate (single function) by indicating a reference constraint; or consecutive
definition by adding coefficients for all members.

3.2 Special Ordered Sets

3.2.1

Basic functions

Special Ordered Sets of type n (n=1, 2) are sets of variables of which at most n may be non-zero at
an integer feasible solution. Associated with each set member is a real number (weight),
establishing an ordering among the members of the set. In SOS of type 2, any positive variables
must be adjacent in the sense of this ordering.

In BCL, Special Ordered Sets may be defined in different ways as illustrated in Figure 3.2. As with
arrays and constraints, they may be created either with a call to a single function (see Section
3.2.2), or by adding coefficients consecutively.

In the basic, incremental definition, function xPrREnewsos marks the beginning of the definition
of a set. Single members are added by function xPrEaddsosel and arrays by function
¥PRBaddsosarrel, each time indicating the corresponding coefficients. Single elements, or an
entire set definition, can be deleted with functions xPrRBdelsosel and xPRBdelsos respectively.
BCL also has functions to retrieve the name of a SOS and its type (xPRBget sosname and
¥PRBgetsostype). It is also possible to set branching directives for a SOS (function

¥PRBset sosdir), including priorities, choice of the preferred branching direction and definition
of pseudo costs.

3.2.2 Array-based SOS definition

BCL provides two functions for creating Special Ordered Sets with a single function call:
¥PRBnewsosrc and xPRBnewsosw. With both functions, a new SOS is created by indicating the
type (1 or 2), an array of variables and the corresponding weight coefficients for establishing an
ordering among the set elements. With xPrEnewsosrc, these coefficients are taken from the
variables’ coefficients in the indicated reference constraint. When using function xPrREnewsosw,
the user directly provides an array of weight coefficients.

3.2.3 Example

In the previous examples, instead of defining the delta variables as binaries, the problem can also
be formulated using SOS of type 1. In this case, the delta variables are defined to be continuous
as the SOS1 property and their unit sum ensure that one and only one takes the value one.

XPRBprob prob; /* BCL problem =/

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 19

XPRBvar delta[NJ] [NT]; /* Variables for start times =*/
XPRBsos set [NJ];

void jobs_model (void)

{

for (3=0; J<NJ; j++) /* Declare a variable for each job x/

for (t=0; t<NT-DUR[Jj]+1;t++) /* and for each start time =*/
delta[j] [t] = XPRBnewvar (prob, XPRB_PL,

XPRBnewname ("delta%dsd", j+1,t+1), 0, 1);
for (3=0; j<NJ; j++)

{ /* Create a new SOS1 =*/
set [J] = XPRBnewsos (prob, "sosj", XPRB_S1);
for (t=0; t<NT-D[J]+1;t++) /x Add variables to the S0OS «/

XPRBaddsosel (set[j], deltaljl[t], t+1);
}
}

In order to simplify the definition of the SOS one can use the model formulation with variable
arrays presented in the previous chapter. The constraints Link are employed as the reference
constraints to determine the weight coefficient for each variable (the constraints need to be
stored in an array, Link).

XPRBprob prob; /* BCL problem =*/
XPRBarrvar delta[NJ]; /* Sets of var.s for start times x/
XPRBsos set [NJ];

void jobs_model (void)

{

XPRBctr Link[NJ]; /* "Link" constraints x/
for (3J=0; J<NJ; j++) /+ Declare a set of var.s for each job x/
delta[j] = XPRBnewarrvar (prob, (NT-(int)DUR[]j]+1), XPRB_PL,

XPRBnewname ("delta%d", j+1), 0, 1);

for (§=0; J<NJ; j++) /* Linking start times & binaries «*/
{

Link[j] = XPRBnewsumc (prob, "Link",delta[]j],1,XPRB_E,O0);
XPRBaddterm (Link[]j],start[]J],-1);

}

/+ Create a SOS1 for each job using constraints "Link" as
reference constraints */
for (3=0; j<NJ; j++)
set [Jj] = XPRBnewsosrc (prob, "sosj", XPRB_S1, delta[j], Link[]j]);
}

Instead of setting directives on the binary variables, we may now define branching directives for
the SOS1.

for (j=0; j<NJ; j++) XPRBsetsosdir (set[j],XPRB_DN,O0);
/* First branch downwards on sets =/

3.3 Output and printing

BCL provides printing functions for variables, constraints, Special Ordered Sets, and index sets
(XPRBprintvar, XPRBprintarrvar, XPRBprintctr, XPRBprintsos, XPRBprintidxset) as
well as the entire model definition (xPrREprintprob). Any program output may be printed with
¥PRBprintf in a similar way to the C function print f. The output of all functions mentioned
above is intercepted by the callback xPrEde fcbmsg if this function has previously been defined
by the user.

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 20

File output XPRBexportprob (prob, XPRB_MPS, "expl2") ;

Print model objects XPRBvar y;
XPRBprintvar (y) ;

XPRBarrvar av;
XPRBprintarrvar (av) ;

XPRBctr c;
XPRBprintctr (c);

XPRBsos s;
XPRBprintsos (s);

XPRBidxset 1is;
XPRBprintidxset (is);

Print a given problem XPRBprintprob (prob) ;
Print program output XPRBprintf ("Print this text");
Compose a name string int i = 3;

XPRBnewname ("abc%d", i) ;

Figure 3.3: File output and printing.

It is also possible to output the problem to a file in extended LP format or as a matrix in extended
MPS format (function xPrREexportprob). Note that unlike standard LP format, the extended LP
format supports Special Ordered Sets and non-standard variable types (semi-continuous,
semi-integer, or partial integers). Like the standard LP format it requires the sense of the
objective function to be defined.

3.3.1 Example

We may now augment the last few lines of the model definition (cmodel or cmodel_array) of
our example with some output functions. Note that these output functions may be added at any
time to print the current problem definition in BCL. The function XPRBprintprob prints the
complete BCL problem definition to the standard output. The function XPRBexportprob writes
the problem definition in LP format or as a matrix in extended MPS format to the indicated file.

XPRBprintprob (prob) ; /* Print out the problem definition =/
XPRBexportprob (prob, XPRB_MPS, "expll") ;
/+ Output matrix to MPS file x/

Instead of printing the entire problem with function xPrRBprintprob, itis also possible to display
single variables or constraints as soon as they have been defined. The following modified extract
of the model definition may serve as an example.

#include <stdio.h>
#include "xprb.h"

#define NJ 4 /* Number of jobs %/
#define NT 10 /* Time limit */

double DURI[] = {3,4,2,2}; /* Durations of jobs */
XPRBvar start[NJ]; /* Start times of jobs */
XPRBprob prob; /% BCL problem =/

void cmodel (void)
{
XPRBctr ctr;

int j, t;
prob=XPRBnewprob ("Jobs") ; /* Initialization =/
for (3=0; J<NJ; j++) /% Create start time variables =/

{

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 21

Add quadratic term XPRBctr c;
XPRBvar x1;
XPRBaddgterm(c, x1,x1,3);

Set quadratic term XPRBvar x2;
XPRBsetgterm(c, x1,x2,-7.2);

Delete a quadratic term XPRBdelqgterm(c, x2,x1) ;

Figure 3.4: Defining and accessing quadratic terms in BCL.

start[j] = XPRBnewvar (prob, XPRB_PL, "start",0,NT);
XPRBprintvar (start[]J]);
XPRBprintf (", ");
}
/* Precedence relation betw. jobs =/

ctr = XPRBnewprec (prob, "Prec",start[0],DUR[0],start[2]);
XPRBprintctr (ctr);

3.4 Quadratic Programming with BCL

As an extension to LP and MIP, BCL also provides support for formulating and solving Quadratic
Programming (QP) and Mixed Integer Quadratic Programming (MIQP) problems, that is, problems
with linear constraints with a quadratic objective function of the form

c"x+x"Qx

where x is the vector of decision variables, c is the cost vector, and Q is the quadratic cost
coefficient matrix. The matrix Q must be symmetric. It should also be positive semi-definite if the
problem is to be minimized, and negative semi-definite if it is to be maximized, because the
Xpress-Optimizer solves convex QP problems. If the problem is not convex, the solution
algorithms may not converge at all, or may only converge to a locally optimal solution.

Release 4.0 of BCL extends this functionality to Quadratically Constrained Quadratic
Programming (QCQP) problems, that is, problems that in addition to a quadratic objevctive
function have constraints of the form

a'x+x'Qx<b

where a is the coefficient vector for the linear terms, b the constant RHS value, and the same
conditions as in objective functions apply to the quadratic coefficient matrix Q (positive
semi-definite in < constraints, and negative semi-definite in > constraints). Quadratic constraints
in QCQP problems must be inequalities.

In BCL, the quadratic part of constraints is defined termwise, much like what we have seen for
the definition of linear constraints in Section 2.3. The coefficient of a quadratic term is either set
to a given value (xPRBsetgterm) or its value is augmented by the given value (xPrRBaddgterm).
Quadratic objective functions are set in the same way as linear ones with a call to xPrREsetob.
Note that the definition of the quadratic constraint terms should always be preceded by the
definition of the corresponding variables.

Unless BCL is used in Student Mode, functions xPREprintprob, XPRBprintob i,
XPRBexportprob, and xPRBprintctr will print or output to a file the complete problem /
constraint definition, including the quadratic terms.

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 22

3.4.1 Example

We wish to distribute a set of points represented by tuples of x-/y-coordinates on a plane

minimizing the total squared distance between all pairs of points. For each point j we are given a
target location (CX;, CY;) and the (square of the) maximum allowable distance R; to this location.

In mathematical terms, we have two decision variables x; and y; for the coordinates of every point
i. The objective to minimize the total squared distance between all points is expressed by the

following sum.

S5 (00w)

For every point i we have the following quadratic inequality.

(i — CX)? +(yi — CY))* <R;

The following BCL program (xbairport.c) implements and solves this problem.

#include <stdio.h>
#include "xprb.h"

#define N 42
double CX[N], CY[N], R[N];

/* Initialize the data arrays x/

int main(int argc, char xxargv)

{

int 1i,3j;
XPRBprob prob;
XPRBvar x[N],yI[N]; /x x—/y-coordinates to determine «*/

XPRBctr cobij, c;
prob=XPRBnewprob ("airport"); /* Initialize a new problem in BCL =/

/*%x+x VARIABLES *x%x%/
for (i=0; i<N; i++)

x[i] = XPRBnewvar (prob, XPRB_PL, XPRBnewname ("x(%d)",1i), -10, 10);
for (1i=0; i<N; i++)

y[i] = XPRBnewvar (prob, XPRB_PL, XPRBnewname ("y(%d)",i), -10, 10);
/%% x*OBJECTIVE***x/

/* Minimize the total distance between all points =/
cobj = XPRBnewctr (prob, "TotDist", XPRB_N);
for (i=0;i<N-1; i++)
for (j=1i+1; j<N; j++)
{

XPRBaddgterm (cobj, x[i], x[i], 1);

XPRBaddgterm(cobj, x[i]l, x[j], -2);
XPRBaddgterm (cobj, x[J], x[3jl, 1);

XPRBaddgterm (cobj, yI[il, yI[il, 1);

XPRBaddgterm(cobj, yI[il, yvI[jl, -2);
XPRBaddgterm (cobij, yI[3l, vI[jl, 1);

}

XPRBsetob] (prob, cobij); /* Set the objective function =*/

/*%%% CONSTRAINTS %%/
/% All points within given distance of their target location =/
for (1i=0; i<N; i++)

{

c = XPRBnewctr (prob, XPRBnewname ("LimDist_%d",i), XPRB_L);

XPRBaddgterm(c, x[i], x[i], 1);

XPRBaddterm(c, x[i], —-2*CX[i]);

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved.

page 23

XPRBaddterm(c, NULL, —-CX[i]=*CX[i]);
XPRBaddgterm(c, yI[il, yI[il, 1);
XPRBaddterm(c, y[i], —-2*CY[i]);
XPRBaddterm(c, NULL, —-CY[i]=*CY[i]);
XPRBaddterm(c, NULL, R[i1]);

}

/*%x%x*SOLVING + OUTPUT***x/
XPRBsetsense (prob, XPRB_MINIM); /* Sense of optimization =/
XPRBsolve (prob,""); /+ Solve the problem x/

printf ("Solution: %$g\n", XPRBgetobjval (prob));
for (1=0; i<N; i++)
printf (" %d: %g, %g\n", i, XPRBgetsol (x[i]), XPRBgetsol(y[il]));

return 0;

}

3.5 User error handling

In this section we use a small, infeasible problem to demonstrate how the error handling and all
printed messages produced by BCL can be intercepted by the user’s program. This is done by
defining the corresponding BCL callback functions and changing the error handling flag. If error
handling by BCL is disabled, then the definition of the error callback replaces the necessity to
check for the return values of the BCL functions called by a program.

User error handling may be required if a BCL program is embedded in some larger application or
if the program is run under Windows from an application with windows. In all other cases it will
usually be sufficient to use the error handling provided by BCL.

#include <stdio.h>
#include <setjmp.h>
#include <string.h>
#include "xprb.h"

Jmp_buf model_failed; /* Marker for the longjump */

void modinf (XPRBprob prob)
{

XPRBvar x[3];

XPRBctr ctr[2], cobj;

int 1i;

for (i=0;1i<2;i++) /+ Create two integer variables x/
x [1]=XPRBnewvar (prob, XPRB_UI, XPRBnewname ("x_%d",1i),0,100);
/+ Create the constraints:

Cl: 2x0 + 3x1 >= 41

C2: x0 + 2x1 = 13 «/
ctr[0]=XPRBnewctr (prob, "C1l",XPRB_G) ;
XPRBaddterm (ctr([0],x[0],2);
XPRBaddterm(ctr[0],x[1],3);
XPRBaddterm (ctr[0],NULL, 41) ;

ctr[1]=XPRBnewctr (prob, "C2",XPRB_E) ;
XPRBaddterm(ctr[1],x[0],1);
XPRBaddterm (ctr[1],x[1],2);
XPRBaddterm(ctr[1],NULL, 13);

/+ Uncomment the following line to cause an error in the model
that triggers the user error handling: =/
/* x[2]=XPRBnewvar (prob, XPRB_UI, "x_2", 10, 1); =/

/* Objective: minimize x0+x1 */
cobj = XPRBnewctr (prob, "OBJ", XPRB_N) ;
for (i=0;1i<2;i++) XPRBaddterm(cobj, x[i], 1);

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 24

XPRBsetob] (prob, cobj) ; /+ Select objective function =/
XPRBsetsense (prob, XPRB_MINIM) ; /+ Obj. sense: minimization =/

XPRBprintprob (prob) ; /* Print current problem */

XPRBsolve (prob, ""); /+ Solve the LP */
XPRBprintf (prob,
"problem status: %$d LP status: %d MIP status: %d\n",
XPRBgetprobstat (prob), XPRBgetlpstat (prob),
XPRBgetmipstat (prob)) ;

/* This problem is infeasible, that means the following command
will fail. It prints a warning if the message level is at
least 2 x/

XPRBprintf (prob, "Objective: %$g\n", XPRBgetobjval (prob));

for (1i=0;1i<2; i++) /* Print solution values =*/
XPRBprintf (prob, "%$s:%g, ", XPRBgetvarname (x[1i]),
XPRBgetsol (x[1i]));
XPRBprintf (prob, "\n");
}

/*%%% User error handling function *#xx/
void XPRB_CC usererror (XPRBprob prob, void xvp, int num,
int type, const char =t)
{
printf ("BCL error %d: %s\n", num, t);
if (type==XPRB_ERR) longjmp (model_failed,1);
}

/**xx User printing function **xx/
void XPRB_CC userprint (XPRBprob prob, void xvp, const char *msg)
{

static int rtsbefore=1;

/* Print ’'BCL output’ whenever a new output line starts,
otherwise continue to print the current line. x/
if (rtsbefore)
printf ("BCL output: %s", msg);

else
printf ("%s",msqg) ;
rtsbefore=(msglstrlen(msg)-1]=='\n’");

}

int main(int argc, char xxargv)

{
XPRBprob prob;

XPRBseterrctrl (0); /+ Switch to error handling by the
user’s program x/
XPRBsetmsglevel (NULL, 2) ; /* Set the printing flag to

printing errors and warnings «*/

XPRBdefcbmsg (NULL, userprint, NULL);
/* Define the printing callback func. */

if ((prob=XPRBnewprob ("ExplInf"))==NULL)
{ /+ Initialize a new problem in BCL */
fprintf (stderr, "I cannot create the problem\n");
return 1;
}
else
if (setjmp (model_failed)) /* Set a marker at this point =/
{
fprintf (stderr, "I cannot build the problem\n");
XPRBdelprob (prob) ; /+ Delete the part of the problem
that has been created */
XPRBdefcberr (prob, NULL, NULL);
/* Reset the error callback =/
return 1;

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved.

page 25

}
else
{
XPRBdefcberr (prob, usererror, NULL);
/+ Define the error handling callback */
modinf (prob) ; /* Formulate and solve the problem =*/
XPRBdefcberr (prob, NULL, NULL);
/* Reset the error callback =/
return O;
}
}

Since this example defines the printing level and the printing callback function before creating
the problem (that is, before BCL is initialized), we pass NULL as first argument.

3.6 Efficent modeling with BCL

This section discusses some recommendations for the efficient use of BCL. Such considerations are
particularly important when working with large-size optimization problems or when solving a
large number of models / model instances in a single application. Our criteria for measuring
efficiency are:

¢ model execution speed
e memory consumption
Please note that this section is only concerned with modeling aspects. For issues relating to the

solving process, such as the performance of the underlying optimization algorithms, the reader is
refered to the Xpress-Optimizer Reference Manual.

3.6.1 Names dictionaries

BCL works with two names dictionaries, the main names dictionary (storing the names of
constraints, decision variables, etc.) and a dedicated dictionary for index set elements. The former
is active by default wheras the latter gets activated only if a model uses index sets. The following
remarks refer principally to the names dictionary.

3.6.1.1 Disabling the names dictionary

If an application does not make use of the names of modeling objects the names dictionary can
be disabled to save memory. The function xPrBsetdictsize for resetting the dictionary size can
only be called immediately after the creation of the corresponding problem. Once the dictionary
has been disabled it cannot be enabled any more. All methods relative to the names cannot be
used if this dictionary has been disabled and BCL will not generate any unique names at the
creation of model objects.

e C: XPRBsetdictsize (prob, XPRB_DICT_NAMES, O0);
o C++: XPRBprob.setDictionarySize (XPRB_DICT_NAMES, 0);

e Java: XPRBprob.setDictionarySize (XPRB.DICT_NAMES, 0);

e C#: XPRBprob.setDictionarySize (BCLconstant.DICT_NAMES, 0);

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 26

3.6.1.2 Setting the names dictionary size

If you wish to use the names dictionary we recommend to choose a size close to the number of
variables+constraints in your problem, preferrably a prime number. (Too small values will slow
down access to the names dictionary, larger values imply higher memory usage.)

3.6.2 Handling of problems
3.6.2.1 Resetting a problem

You should reset a problem to free up memory if the solution information is no longer required
(function xPrRBresetprob). Resetting a problem deletes any solution information stored in BCL;
it also deletes the corresponding Xpress-Optimizer problem and removes any auxiliary files that
may have been created by optimization runs.

e C: XPRBresetprob (prob) ;

e C++/Java/C#: XPRBprob.reset ();

Other functions for freeing memory of auxiliary/intermediate structures:
XPRBcleardir, XPRBdelarrvar, XPRBRdelbasis, XPRBdelcut

3.6.2.2 Releasing a problem

With C a problem may be deleted explicictly (xPrEde1prob) to free up all memory used by it. In
the object-oriented interfaces make sure to release all references to a problem to enable garbage
collection on the object.

The Java interface also publishes the problem finalizer: xPRBprob.finalize ().

3.6.3 Constraint definition
3.6.3.1 Object-oriented interfaces

Overloaded operators and the more algebraic-style definition of constraints via expressions in the
object-oriented interfaces of BCL lead to more easily human-readable models but unfortunately,
they also create many intermediate objects, making them computationally less efficient. With
constraint/expression sizes upwards of 1000 terms a slowdown tends to become noticeable and
alternative ways of constraint formulation should be sought.

The best alternative is to use the addTerm and set Term methods for constraints or expressions
(these avoid the creation of intermediate objects, such as terms or expressions, thus reducing
memory consumption and most often leading to a speed up).

Example:

o C++:
Replace
ctr += 17+x;
by
ctr.addTerm (17, x);

e Java:
Replace
ctr.add(x.mul (17));

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 27

by
ctr.addTerm(x, 17); // or: ctr.addTerm(1l7, x);

3.6.3.2 Order of enumeration

In pre-Release 2008 versions of BCL it is recomended to enumerate / access decision variables

within loops in the order of their creation. This recommendation does not apply to BCL 4.0 and
newer.

Further modeling topics (©2009 Fair Isaac Corporation. All rights reserved. page 28

Il. BCL library and class reference

Chapter 4
BCL C library functions

A large number of routines are available within the Xpress Builder Component Library, BCL,
ranging from simple routines for the creation and solution of problems to sophisticated callback
functions and interaction with the Xpress-Optimizer library.

In BCL, references to modeling objects (problem definitions, variables, constraints, sets, and
bases) have the following types:

XPRBprob a problem definition;

XPRBvar a variable;

XPRBarrvar a one-dimensional array, with elements of type XPRBvar;

XPRBctr a constraint;

XPRBcut a cut;

XPRBsoOs a Special Ordered Set (SOS1 of SOS2);

XPRBidxset an index set;

XPRBbasis a basis.

4.1 Layout for function descriptions

All functions mentioned in this chapter are described under the following set of headings:

Function name The description of each routine starts on a new page for the sake of clarity.

Purpose A short description of the routine and its purpose begins the information
section.

Synopsis A synopsis of the syntax for usage of the routine is provided. '‘Optional’

arguments and flags may be specified as NULL if not required. Where this
possibility exists, it will be described alongside the argument, or in the
Further Information at the end of the routine’s description.

Arguments A list of arguments to the routine with a description of possible values for
them follows.

Return value A list of possible return values and their meaning.

(©2009 Fair Isaac Corporation. All rights reserved. page 30

Examples One or two examples are provided which explain certain aspects of the
routine’s use.

Further information Additional information not contained elsewhere in the routine’s
description is provided at the end.

Related topics Finally a list of related routines and topics is provided for comparison and
reference.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 31

XPRBaddarrterm

Purpose
Add multiple linear terms to a constraint.

Synopsis
int XPRBaddarrterm (XPRBctr ctr, XPRBarrvar av, double xcoeff);

Arguments .
ctr Reference to a constraint.

av Reference to an array of variables.

coeff Valuesto be added to the coefficients of the variables in the array (the number of
coefficients must correspond to the size of the array of variables.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following adds the expression

2xtyl[0] + 13%tyl[1l] + 15xtyl[2] + 6xtyl[3] +8.5xtyl[4]
to the constraint ctrl.

XPRBprob prob;

XPRBctr ctrl;

XPRBarrvar tyl;

double cr[] = {2, 13, 15, 6, 8.5};

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBaddarrterm(ctrl, tyl, cr);

Further information

This function adds multiple linear terms to a constraint, the variables coming from array av and
the corresponding coefficients from coeff. If the constraint already has a term with one of the

variables, the corresponding value from coeff is added to its coefficient.

Related topics
XPRBaddterm, XPRBdelctr, XPRBdelterm, XPRBnewctr.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 32

XPRBaddcutarrterm

Purpose
Add multiple linear terms to a cut.

Synopsis
int XPRBaddcutarrterm (XPRBcut cut, XPRBarrvar av, double *coeff);

Arguments
cut Reference to a cut.

av Reference to an array of variables.

coeff Valuesto be added to the coefficients of the variables in the array (the number of
coefficients must correspond to the size of the array of variables).

Return value
0 if function executed successfully, 1 otherwise.

Example
Add the term Z?:o cri- ty1; to the cut cut1.

XPRBcut cutl;

XPRBarrvar tyl;

double cr[] = {2.0, 13.0, 15.0, 6.0, 8.5};

XPRBprob expll;

expll = XPRBnewprob ("cutexample");

tyl = XPRBnewarrvar (expll, 5, XPRB_PL, "arryl", 0, 500);
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBaddcutarrterm(cutl, tyl, cr);

Further information
This function adds multiple linear terms to a cut, the variables coming from array av and the
corresponding coefficients from coeff. If the cut already has a term with one of the variables,
the corresponding value from coeff is added to its coefficient.

Related topics
XPRBnewcut, XPRBaddcutterm, XPRBdelcutterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 33

XPRBaddcuts

Purpose
Add cuts to a problem.

Synopsis
int XPRBaddcuts (XPRBprob prob, XPRBcut =xcta, int num);

Arguments
prob Reference to a problem.

cta Array of previously defined cuts.
num Number of cuts in cta.

Return value
0 if function executed successfully, 1 otherwise.

Example

The example shows how to set up the cut manager node callback to add three previously defined
cuts ca in node 2 of the MIP search.

XPRBcut cal[3];
XPRBprob expll;

int XPRS_CC usrcme (XPRSprob oprob, voidx wvd)
{

int num;
XPRSgetintattrib (oprob, XPRS_NODES, &num);
if (num == 2) XPRBaddcuts (expll, ca, 3);

return 0O;

int main(int argc, char *xargv)
{

XPRSprob oprob;

expll = XPRBnewprob ("cutexample");

ce /+ Define the problem and the cuts ’'ca’ */
XPRBsetcutmode (expll, 1); /* Enable the cut mode =x/

oprob = XPRBgetXPRSprob (expll); /+ Get Optimizer problem x/
XPRSsetcbcutmgr (oprob, usrcme, NULL); /x Set cut mgr. callback =*/
XPRBsolve (expll, "g"); /* Solve the MIP problem x/

}

Further information
This function adds previously defined cuts to the problem in Xpress-Optimizer. It may only be
called from within the Xpress-Optimizer cut manager callback functions. BCL does not check for
doubles, that is, if the user defines the same cut twice it will be added twice to the matrix. Cuts

added at a node during the branch and bound search remain valid for all child nodes but are
removed at all other nodes.

Related topics
XPRBnewcut, XPRBdelcut, XPRBsetcutmode

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 34

XPRBaddcutterm

Purpose
Add a term to a cut.

Synopsis

int XPRBaddcutterm (XPRBcut cut, XPRBvar var, double coeff);

Arguments .
cut Reference to a cut as resulting from xPrREnewcut.

var Reference to a variable, may be NULL.

coeff Value to be added to the coefficient of the variable var.

Return value
0 if function executed successfully, 1 otherwise.

Example
Add the term 5.4 - x1 to the cut cutl.

XPRBcut cutl;

XPRBvar x1;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");

x1 = XPRBnewvar (expll, XPRB_UI, "abc3", 0, 100);

cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBaddcutterm(cutl, x1, 5.4);

Further information

This function adds a new term to a cut, comprising the variable var with coefficient coeff. If the
cut already has a term with variable var, coeff is added to its coefficient. If var is set to NULL,

the value coeff is added to the right hand side of the cut.

Related topics

XPRBnewcut, XPRBaddcutarrterm XPRBdelcutterm, XPRBsetcutterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 35

XPRBaddidxel

Purpose
Add an index to an index set.

Synopsis
int XPRBaddidxel (XPRBidxset idx, const char #*name);

Arguments .
idx A BCL index set.

name Name of the index to be added to the set.

Return value
Sequence number of the index within the set, -1 in case of an error.

Example

The following defines an index set with space for 100 entries, adds an index to the set and then
retrieves its sequence number.

XPRBprob prob;
XPRBidxset iset;
int wval;

iset = XPRBnewidxset (prob, "Set", 100);
val = XPRBaddidxel (iset, "first");

Further information
This function adds an index entry to a previously defined index set. The new element is only
added to the set if no identical index already exists. Both in the case of a new index entry and an
existing one, the function returns the sequence number of the index in the index set. Note that,
according to the usual C convention, the numbering of index elements starts with 0.

Related topics
XPRBgetidxel, XPRBnewidxset.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 36

XPRBaddqgterm

Purpose
Add a quadratic term to a constraint.

Synopsis
int XPRBaddgterm (XPRBctr ctr, XPRBvar varl, XPRBvar var2,
double coeff);

Arguments .
ctr Reference to a constraint.

varl Reference to a variable.
var2 Reference to a variable (not necessarily different).
coeff Value to be added to the coefficient of the term varl * var2.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following example adds the term —-2xx2+x4 to the constraint ctri:

XPRBctr ctril;
XPRBvar x2,x4;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);

x2 = XPRBnewvar (prob, XPRB_PL, "abcl", 0, XPRB_INFINITY),;
x4 = XPRBnewvar (prob, XPRB_PL, "abcb",0 , XPRB_INFINITY);
XPRBaddgterm(ctrl, x2, x4, -2);

Further information

This function adds a new quadratic term to a constraint, comprising the product of the variables
varl and var2 with coefficient coef f. If the constraint already has a term with variables var1

and var2, coeff is added to its coefficient.

Related topics
XPRBdelgterm, XPRBsetgterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 37

XPRBaddsosarrel

Purpose

Add multiple elements to a SOS.
Synopsis

int XPRBaddsosarrel (XPRBsos sos,
Arguments

sos A SOS of type 1 or 2.

av An array of variables.

weight

the array of variables.

Return value

XPRBarrvar av, double xweight);

0 if function executed successfully, 1 otherwise.

Example

The following adds an array ty1 with weights cr to the SOS set1.

XPRBprob prob;
XPRBsos setl;
XPRBarrvar tyl;

double cr[] = {2, 13, 15, 6, 8.5};

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
setl = XPRBnewsos (prob, "sosl", XPRB_S1);
XPRBaddsosarrel (setl, tyl, cr);

Further information

An array of weight coefficients. The number of weights must correspond to the size of

This function adds an array of variables and their corresponding weights (reference values) to a
SOS. If a variable is already contained in the set, the indicated value is added to its weight. Note
that all weight coefficients must be different from 0.

Related topics

XPRBaddsosel, XPRBdelsos, XPRBdelsos

el, XPRBnewsos.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 38

XPRBaddsosel

Purpose
Add an element to a SOS.

Synopsis

int XPRBaddsosel (XPRBsos sos, XPRBvar var, double weight);
Arguments

sos A SOS of type 1 or 2.

var Reference to a variable.

weight The corresponding weight or reference value.

Return value
0 if function executed successfully, 1 otherwise

Example

XPRBprob prob;
XPRBsos setl;
XPRBvar x2;

x2 = XPRBnewvar (prob, XPRB_PL," abcl",0 ,X PRB_INFINITY);
setl = XPRBnewsos (prob, "sosl", XPRB_S1);
XPRBaddsosel (setl, x2, 9);

This adds a variable x2 with weight 9 to the SOS set1.

Further information
This function adds a single variable and its weight coefficient to a Special Ordered Set. If the
variable is already contained in the set, the indicated value is added to its weight. Note that
weight coefficients must be different from 0.

Related topics
XPRBaddsosarrel, XPRBdelsos, XPRBdelsosel, XPRBnewsos

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 39

XPRBaddterm

Purpose
Add a linear term to a constraint.

Synopsis
int XPRBaddterm (XPRBctr ctr, XPRBvar var, double coeff);
Arguments . .
ctr BCL reference to a constraint, resulting from xPrREnewct r.
var BCL reference to a variable. May be NULL if not required.
coeff Amount to be added to the coefficient of the variable var.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBctr ctrl;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBaddterm(ctrl, x1, 5.4);

This adds the term 5. 4+x1 to the constraint ctril.

Further information

This function adds a new linear term to a constraint, comprising the variable var with coefficient
coeff. If the constraint already has a term with variable var, coeff is added to its coefficient. If
var is set to NULL, the value coeff is added to the right hand side of the constraint.

Related topics
XPRBaddarrterm, XPRBaddgterm, XPRBdelctr, XPRBdelterm, XPRBnewctr, XPRBsetterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 40

XPRBapparrvarel

Purpose
Add an entry to a variable array.

Synopsis

int XPRBapparrvarel (XPRBarrvar av, XPRBvar var);
Arguments

av BCL reference to an array.

var The variable to be added.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following inserts the variable x1 in the first free position of the array av2.

XPRBprob prob;
XPRBarrvar av2;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
av2 = XPRBstartarrvar (prob, 5, "arr2");
XPRBapparrvarel (av2, x1);

Further information
This function inserts a variable in the first available position within an array.

Related topics
XPRBdelarrvar, XPRBendarrvar, XPRBnewarrvar, XPRBsetarrvarel, XPRBstartarrvar

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 41

XPRBcleardir

Purpose
Delete all directives.

Synopsis
int XPRBcleardir (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBcleardir (expl2);

This deletes all directives for the current problem, exp12.

Related topics
XPRBsetvardir, XPRBsetsosdir

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 42

XPRBdefcbdelvar

Purpose
Callback for interface update at deletion of variables.

Synopsis
int XPRBpdefcbdelvar (XPRBprob prob,
void (XPRB_CC xdelinter) (XPRBprob eprob, void xevp,
XPRBvar var, void =xlink), void *vp);

Arguments
prob Reference to a problem.

delinter User variable interface update function

eprob Problem from which the callback is called

evp Empty pointer for passing additional information

var Reference to a BCL variable

link Pointer to an interface object

vp Empty pointer for the user to pass additional information

Return value
0 if function executed successfully, 1 otherwise.

Example
Define the variable interface callback function:

XPRBprob prob;

void mydelinter (XPRBprob prob, void xvp, XPRBvar var, void xadr)
{

printf ("Deleted: %s", XPRBgetvarname (var));

}

XPRBdefcbdelvar (prob, mydelinter, NULL);

Further information
This function defines a callback function that is called at the deletion of any variable that is used
in an interface to an external program, (that means, if the interface pointer of the variable is
different from NULL).

Related topics
XPRBgetvarlink, XPRBsetvarlink.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 43

XPRBdefcberr

Purpose
Callback for user error handling.

Synopsis
int XPRBdefcberr (XPRBprob prob,
void (XPRB_CC «usererr) (XPRBprob my_prob, void xmy_object,
int errnum, int type, const char *errtext), void xobject);

Arguments
prob Reference to a problem.
usererr The user’s error handling function.
my_prob Problem pointer passed to the callback function.
my_object User-defined object passed to the callback function.
errnum The error number.
type Type of the error. This will be one of:
XPRB_ERR fatal error;
XPRB_WAR warning.
errtext Text of the error message.
object User-defined object to be passed to the callback function.

Return value
0 if function executed successfully, 1 otherwise.

Example
In this example a function is defined for displaying errors and exiting if they are suitably severe.
This function is then set as the error-handling callback.

XPRBprob prob;

void myerr (XPRBprob my_prob, void xmy_object, int num, int type,
const char =*t)
{
printf ("BCL error %d: %s\n", num, t);
if (type == XPRB_ERR) exit (0);
}

XPRBdefcberr (prob, myerror, NULL);
Further information

1. This function defines the error handling callback that returns the error number and text of error
messages and warnings produced by BCL for a given problem. A list of BCL error messages with
some explanations can be found in the Appendix A of this manual. If printing of error or warning
messages is enabled (see xPRBsetmsglevel) these are printed after the call to this function.

2. It is recommended to define this callback function if the error handling by BCL is disabled (for
instance in BCL programs integrated into larger applications or in BCL programs executed under
Windows). Alternatively it is of course possible to test the return values of all BCL functions. How-
ever, the callback provides more detailed information about the type of error that has occurred.

3. This function may be used before any problems have been created and even before BCL has been
initialized (with first argument NULL). In this case the error handling function set by this callback
applies to all problems that are creted subsequently.

Related topics
XPRBdefcbmsg, XPRBgetversion, XPRBseterrctrl.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 44

XPRBdefcbmsg

Purpose
Callback for printed output.

Synopsis
int XPRBdefcbmsg (XPRBprob prob,
void (XPRB_CC =userprint) (XPRBprob my_prob, void *my_object,
const char xmsgtext), void xobject);

Arguments
prob Reference to a problem.

userprint A user message handling function.

my_prob Problem pointer passed to the callback function.
my_object User-defined object passed to the callback function.
msgtext The message text.

object USer-defined object to be passed to the callback function.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following defines a print function and then sets it as a callback.

XPRBprob prob;

void myprint (XPRBprob prob, void xmy_object, const char *msqg);
{

printf ("BCL output: %s\n", msqg);
}

XPRBdefcbmsg (prob, myprint, NULL);

Further information

1. This function defines a callback function that returns any messages enabled by the setting of
XPRBsetmsglevel, including warnings and error messages, any other output produced by BCL,
and any messages from the Optimizer library. Independent of the message printing settings, this
callback also returns output printed by the user’s program with function xprEprintf. If this
callback is not defined by the user, any program output is printed to standard output with the
exception of warnings and error messages which are printed to the standard error output channel.

2. This function may be used before any problems have been created and even before BCL has been
initialized (with first argument NULL). In this case the printing function set by this callback applies

to all problems that are creted subsequently.

3. A BCL program must not define the message callback xPrRSsetcbmessage of Xpress-Optimizer

(however, all other logging callbacks of the Optimizer may be used).

Related topics
XPRBdefcberr, XPRBsetmsglevel.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 45

XPRBdelarrvar

Purpose
Delete a variable array.

Synopsis
int XPRBdelarrvar (XPRBarrvar av);

Argument .
av BCL reference to an array in the model.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBarrvar av2;

av2 = XPRBstartarrvar (prob, 5, "arr2");
XPRBendarrvar (av2) ;
XPRBdelarrvar (av2) ;

This deletes the array av2, although not any variables that may have been added to it.

Further information
This function deletes the reference to an array. Arrays may be used as auxiliary constructs for
defining constraints. This means it may not be necessary to keep them. If an array is only used in
the model, it can be deleted by a call to this function, thus freeing the corresponding memory
allocated to it. The variables belonging to the array are not deleted by this function if the array
has been created with xPrREstartarrvar.

Related topics
XPRBapparrvarel, XPRBendarrvar, XPRBnewarrvar, XPRBsetarrvarel, XPRBstartarrvar

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 46

XPRBdelbasis

Purpose
Delete a previously saved basis.

Synopsis
void XPRBdelbasis (XPRBbasis basis);

Argument . .
basis Reference to a previously saved basis.

Example
The following code demonstrates saving a basis prior to some matrix changes. Subsequently the
old basis is reloaded and the redundant saved basis deleted.

XPRBprob expl2;
XPRBbasis basis;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "1");
basis = XPRBsavebasis (expl2);

XPRBloadmat (expl2) ;

XPRBloadbasis (basis);
XPRBdelbasis (basis);
XPRBsolve (expl2,"1");

Further information
This function deletes a basis that has been saved using function xPrREsavebasis. Typically, the
reference to a basis should be deleted if it is not used any more.

Related topics
XPRBloadbasis, XPRBsavebasis

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 47

XPRBdelctr

Purpose
Delete a constraint.

Synopsis
int XPRBdelctr (XPRBctr ctr);

Argument .
ctr BCL reference to a constraint.

Return value
0 if function executed successfully, 1 otherwise.

Example
XPRBprob prob;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBdelctr (ctrl);

This deletes the constraint ctr1.

Further information
Delete a constraint from the given problem. If this constraint has previously been selected as the
objective function (using function xPrREsetob), the objective will be set to NULL.

Related topics
XPRBnewctr.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 48

XPRBdelcut

Purpose
Delete a cut definition.

Synopsis
int XPRBdelcut (XPRBcut cut);

Argument
cut Reference to a cut.

Return value
0 if function executed successfully, 1 otherwise.

Example
The example shows how to delete cut cut1.

XPRBcut cutl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBdelcut (cutl);

Further information

This function deletes the definition of a cut in BCL, but not the cut itself if it has already been
added to the problem held in Xpress-Optimizer (using function xPrRBaddcut s).

Related topics
XPRBnewcut, XPRBaddcuts.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 49

XPRBdelcutterm

Purpose
Delete a term from a cut.

Synopsis
int XPRBdelcutterm (XPRBcut cut,

Arguments
cut

var Reference to a variable in the cut.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBvar var);

Reference to a cut as resulting from xPrREnewcut.

Add the term 5.4 - x1 to the cut cut1 and then delete it.

XPRBcut cutl;
XPRBvar x1;
XPRBprob expll;

expll = XPRBnewprob ("cutexample");

x1 = XPRBnewvar (expll, XPRB_UI, "abc3", 0, 100);
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBaddcutterm(cutl, x1, 5.4);
XPRBdelcutterm(cutl, x1);

Further information

This function removes a variable term from a cut. The constant term (right hand side value) is

changed/reset with function xPrRBsetcutterm.

Related topics

XPRBnewcut, XPRBaddcutarrterm XPRBaddcutterm, XPRBsetcutterm.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 50

XPRBdelprob

Purpose
Delete a problem.

Synopsis
int XPRBdelprob (XPRBprob prob) ;

Argument
prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example
In this example, the problem expl12 is deleted.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");
XPRBdelprob (expl2) ;

Further information
This function deletes the given problem in BCL, and the corresponding problem in the Optimizer.
It also deletes any remaining working files associated with this problem. All parameter settings
remain valid after deleting a problem. If the user does not wish to delete a problem but wants to
free some resources used for storing solution information he may call xPrRBresetprob.

Related topics
XPRBnewprob, XPRBresetprob.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 51

XPRBdelqterm

Purpose
Delete a quadratic term from a constraint.

Synopsis
int XPRBdelgterm (XPRBctr ctr, XPRBvar varl, XPRBvar var2);

Arguments .
ctr Reference to a constraint.

varl Reference to a variable.
var2 Reference to a variable (not necessarily different).

Return value
0 if function executed successfully, 1 otherwise.

Example
The following example first adds the term 5.2xx2xx2 to the constraint ctr1 and then deletes
this term from the constraint:

XPRBctr ctril;
XPRBvar x2,x4;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);

x2 = XPRBnewvar (prob, XPRB_PL, "abcl", 0, XPRB_INFINITY),;
XPRBaddgterm(ctrl, x2, x2, 5.2);

XPRBdelgterm(ctrl, x2, x2);

Further information
This function deletes a quadratic term from a constraint, comprising the product of the variables
varl and var2.

Related topics
XPRBaddgterm, XPRBsetgterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 52

XPRBdelsos

Purpose
Delete a SOS.

Synopsis
int XPRBdelsos (XPRBsos sos);

Argument . .
sos Reference to a previously defined SOS of type 1 or 2.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following deletes the SOS set 1.

XPRBprob prob;
XPRBsos setl;

setl = XPRBnewsos (prob, "sosl", XPRB_S1);
XPRBdelsos (setl);

Further information

This function deletes a SOS without deleting the variables it consists of.

Related topics
XPRBaddsosarrel, XPRBaddsosel, XPRBdelsosel, XPRBnewsos

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 53

XPRBdelsosel

Purpose
Delete an element from a SOS.

Synopsis
int XPRBdelsosel (XPRBsos sos, XPRBvar var);

Arguments
sos A SOS of type 1 or 2.

var Reference to a variable.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following removes the variable x2 from the SOS set1.

XPRBprob prob;
XPRBsos setl;
XPRBvar x2;

x2 = XPRBnewvar (prob, XPRB_PL, "abcl", 0, XPRB_INFINITY);
setl = XPRBnewsos (prob, "sosl", XPRB_S1);

XPRBaddsosel (setl, x2, 9.0);

XPRBdelsosel (setl, x2);

Further information
This function removes a variable from a Special Ordered Set.

Related topics
XPRBaddsosarrel, XPRBaddsosel, XPRBdelsos, XPRBnewsos

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 54

XPRBdelterm

Purpose
Delete a linear term from a constraint.

Synopsis
int XPRBdelterm (XPRBctr ctr, XPRBvar var);
Arguments . .
ctr BCL reference to a previously created constraint.
var BCL reference to a variable.

Return value
0 if function executed successfully, 1 otherwise.

Example
This code deletes the variable x1 from the constraint.

XPRBprob prob;
XPRBctr ctrl;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBaddterm(ctrl, x1, 5.4);

XPRBdelterm(ctrl, x1);

Further information
This function deletes a linear term from the given constraint.

Related topics

XPRBaddarrterm, XPRBaddterm, XPRBdelctr, XPRBnewctr, XPRBsetterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 55

XPRBendarrvar

Purpose
End the definition of a variable array.
Synopsis

int XPRBendarrvar (XPRBarrvar av);

Argument
av BCL reference to an array.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBarrvar av2;

av2 = XPRBstartarrvar (prob, 5, "arr2");
XPRBendarrvar (av2) ;

This terminates the definition of the array av2.

Further information
This function terminates the definition of the array. As the reference to the array is required by
this function in common with all other functions referring to the incremental definition of arrays
it is possible to define several arrays at a time.

Related topics
XPRBdelarrvar, XPRBnewarrvar, XPRBstartarrvar.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 56

XPRBexportprob

Purpose

Print problem matrix to a file.
Synopsis

int XPRBexportprob (XPRBprob prob, int format, char xfilename);
Arguments

prob Reference to a problem.

format The matrix output file format, which must be one of:

XPRB_LP LP file format (default);
XPRB_MPS MPS file format.
filename Name of the output file, without extension.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");
XPRBexportprob (expl2, XPRB_MPS, "ex2");

This prints the problem in MPS format to the file ex2 .mat.
Further information

1. This function prints the matrix to a file with an extended LP or extended MPS format. LP files
receive the extension . 1p and MPS files receive the extension .mat. This function is not available
in the student version.

2. When exporting matrices semi-continuous and semi-continuous integer variables are prepro-
cessed: if a lower bound value greater than 0 is given, then the variable is treated like a continuous
(resp. integer) variable.

Related topics
XPRBprintprob, XPRBprintf.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 57

XPRBfinish, XPRBfree

Purpose
Terminate BCL and release system resources.

Synopsis
int XPRBfinish (void);
int XPRBfree (void);

Return value
0 if function executed successfully, 1 otherwise.

Example
The following tidies up at the end of a BCL session:

XPRBprob prob;
prob = XPRBnewprob (NULL) :

XPRBdelprob (prob) ;
XPRBfinish();

Further information
Importantly, XPRBfinish does not free memory associated with problems. These should all be
removed using the xPrEdelprob function. When running programs that are mainly based on
BCL there is no need to call this function since system resources are freed at the end of the
program. To the contrary, it may be interesting to be able to reset and free resources if a BCL
program is embedded into some larger application that continues to work after the BCL part has
finished. If the user does not wish to delete a problem or terminate BCL but wants to free some
resources used for storing solution information he may call xPrRBresetprob. Note that
XPRBfinish also terminates Xpress-Optimizer if it has been started through BCL. If the
Optimizer has been started with an explicit call to xPrRSinit before BCL has been started, then it
is not terminated by XPRBfinish.

Related topics
XPRBdelprob, XPRBresetprob, XPRBinit.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 58

XPRBfixvar

Purpose
Fix a variable.

Synopsis

int XPRBfixvar (XPRBvar var, double wval);
Arguments .

var BCL reference to a variable.

val The value to which the variable is to be fixed.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code sets the value of variable x1 to 20.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
XPRBfixvar (x1, 20.0);

Further information
This function fixes a variable to the given value. It replaces calls to xPREsetub and xPREset 1b.
The value val may lie outside the original bounds of the variable.

Related topics
XPRBgetbounds, XPRBget1lim, XPRBset 1lb, XPRBset1lim, XPRBsetub.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 59

XPRBgetact

Purpose

Synopsis

Get activity value for a constraint.

double XPRBgetact (XPRBctr ctr);

Argument

ctr Reference to a constraint.

Return value

Example

Activity value for the constraint, 0 in case of an error.

XPRBprob expl2;
XPRBctr ctr2;
XPRBarrvar tyl;
double act

expl2 = XPRBnewprob ("example2");

tyl = XPRBnewarrvar (expl2, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(expl2, "r2", tyl, XPRB_E, 9);
XPRBsolve (expl2, "1");

act = XPRBgetact (ctr2);

This obtains the activity value for the constraint ctr2.

Further information

This function returns the activity value for a constraint. It may be used with constraints that are
not part of the problem (in particular, constraints without relational operators, that is, constraints
of type XPRB_N). In this case the function returns the evaluation of the constraint terms involving
variables that are in the problem. Otherwise, the constraint activity is calculated as activity = RHS
—slack.

If this function is called after completion of a global search and an integer solution has been
found (that is, if function xPRBgetmipstat returns values XPRB_MIP_SOLUTION oOr
XPRB_MIP_OPTIMAL), it returns the value corresponding to the best integer solution. If no
integer solution is available after a global search this function outputs a warning and returns 0.
In all other cases it returns the activity value in the last LP that has been solved. If this function is
used during the execution of an optimization process (for instance in Optimizer library callback
functions) it needs to be preceded by a call to xPrRBsync with the flag XPRB_XPRS_SOL.

Related topics

XPRBgetdual, XPRBgetobjval, XPRBgetrcost, XPRBgetslack, XPRBgetsol, XPRBsync.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 60

XPRBgetarrvarname

Purpose
Get the name of an array of variables.

Synopsis

const char xXPRBgetarrvarname (XPRBarrvar av);

Argument .
av BCL reference to an array of variables.

Return value
Name of the array if function executed successfully, NULL otherwise.

Example

XPRBprob prob;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 10, XPRB_PL, "arryl", 0, 500);
printf ("%$s\n", XPRBgetarrvarname (tyl));

This prints the output arry1, the array variable name.

Further information
This function returns the name of an array of variables. If the name was not set by the user, this is
a default name generated by BCL.

Related topics
XPRBdelarrvar, XPRBgetarrvarsize, XPRBnewarrvar.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 61

XPRBgetarrvarsize

Purpose
Get the size of an array of variables.

Synopsis

int XPRBgetarrvarsize (XPRBarrvar av);
Argument .
av BCL reference to an array of variables.

Return value
Size (= number of variables) of the array, or -1 in case of an error.

Example

XPRBprob prob;
XPRBarrvar tyl;
int tsize;

tyl = XPRBnewarrvar (prob, 10, XPRB_PL, "arryl", 0, 500);
tsize = XPRBgetarrvarsize (tyl);

This gets the size of the array ty1.

Further information
This function returns the size (i.e. the number of elements) of an array of variables. If the
variables have been added incrementally the returned value may be smaller than the maximum
size given at the creation of the array. The returned size represents the number of variables that
have actually been added to the array.

Related topics

XPRBdelarrvar, XPRBgetarrvarname, XPRBnewarrvar.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 62

XPRBgetbounds

Purpose
Get the bounds on a variable.

Synopsis
int XPRBgetbounds (XPRBvar var, double xbdl, double xbdu);

Arguments .
var BCL reference to a variable.

bdl Lower bound value. May be NULL if not required.
bdu Upper bound value. May be NULL if not required.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBvar x1;
double ubound;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
XPRBgetbounds (x1, NULL, &ubound);

This retrieves the upper bound of the variable x1.

Further information
This function returns the currently defined bounds on a variable. If bdl or bdu is set to NULL, no
value is returned into the corresponding argument.

Related topics
XPRBfixvar, XPRBgetlim, XPRBset 1lb, XPRBset1lim, XPRBsetub.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 63

XPRBgetbyname

Purpose
Retrieve an object by its name.

Synopsis
void xXPRBgetbyname (XPRBprob prob, const char *name, int type);

Arguments
prob Reference to a problem.

name The name of the object.

type The type of the object sought. This is one of:
XPRB_VAR a BCL variable;
XPRB_ARR a BCL array of variables;
XPRB_CTR a BCL constraint;
XPRB_S0S a BCL SOS;
XPRB_IDX a BCL index set.

Return value

Reference to a BCL object of the indicated type if function executed successfully, NULL if object
not found or in case of an error.

Example
This example finds the variable with the name abc3.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBgetbyname (prob, "abc3", XPRB_VAR);

Further information
The function returns the reference to an object of the indicated type or NULL. The same name
may be used for objects of different types within one problem definition. This function can only
be used if the names dictionary is enabled (functions xPRBsetdictionarysize).

Related topics

XPRBsetdictionarysize, XPRBnewname.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 64

XPRBgetcolnum

Purpose
Get the column number for a variable.

Synopsis
int XPRBgetcolnum (XPRBvar var);

Argument .
var BCL reference to a variable.

Return value

Column number (non-negative value), or a negative value.

Example

XPRBprob expl2;
XPRBvar x1;
int vindex;

expl2 = XPRBnewprob ("example2");

x1 = XPRBnewvar (expl2, XPRB_UI,
vindex = XPRBgetcolnum(xl);

This gets the column number for variable x1.

Further information

This function returns the column number of a variable in the matrix currently loaded in the
Xpress-Optimizer. If the variable is not part of the matrix, or if the matrix has not yet been
generated, the function returns a negative value. To check whether the matrix has been

"abc3", 0, 100);

generated, use function xPRBgetprobstat. The counting of column numbers starts with 0.

Related topics
XPRBgetvarname, XPRBgetvartype

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 65

XPRBgetctrname

Purpose
Get the name of a constraint.

Synopsis

const char xXPRBgetctrname (XPRBctr ctr);

Argument

ctr Reference to a previously created constraint.

Return value

Name of the constraint if function executed successfully, NULL otherwise

Example

XPRBprob expl2;
XPRBctr ctrl;

expl2 = XPRBnewprob ("example2");

ctrl = XPRBnewctr (expl2,

XPRB_E) ;

printf ("$s\n", XPRBgetctrname (ctrl));

This prints "r1" as its output.

Further information

This function returns the name of a constraint. If the user has not defined a name the default

name generated by BCL is returned.

Related topics
XPRBgetctrtype, XPRBnewctr.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 66

XPRBgetctrrng

Purpose
Get ranging information for a constraint.

Synopsis
double XPRBgetctrrng (XPRBctr ctr, int rngtype);

Arguments . .
ctr Reference to a previously created constraint.

rngtype The type of ranging information sought. This is one of:
XPRB_UPACT upper activity;
XPRB_LOACT lower activity;
XPRB_UUP upper unit cost;
XPRB_UDN lower unit cost.

Return value
Ranging information of the required type.

Example
The following returns the upper activity value of the constraint ctri.

XPRBprob expl2;

XPRBctr ctrl;

double upact;

expl2 = XPRBnewprob ("example2");

ctrl = XPRBnewctr (expl2, "rl", XPRB_E);

XPRBsolve (expl2, "1");
upact = XPRBgetctrrng(ctrl, XPRB_UPACT);

Further information
This method can only be used after solving an LP problem. Ranging information for MIP problems
can be obtained by fixing all discrete variables to their solution values and re-solving the resulting
LP problem.

Related topics
XPRBnewctr,XPRBgetvarrng.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 67

XPRBgetctrtype

Purpose
Get the row type of a constraint.

Synopsis
int XPRBgetctrtype (XPRBctr ctr);

Argument . .
ctr Reference to a previously created constraint.

Return value , . .
XPRB_L ‘less than or equal to’ inequality;

XPRB_G ‘greater than or equal to’ inequality;
XPRB_E equality;

XPRB_N a non-binding row (objective function);
XPRB_R a range constraint;

-1 an error has occurred.

Example
The following returns the type of the constraint ctri.

XPRBprob expl2;
XPRBctr ctrl;
char rtype;

expl2 = XPRBnewprob ("example2");
ctrl = XPRBnewctr (expl2, "rl", XPRB_E);
rtype = XPRBgetctrtype (ctrl);

Further information
The function returns the constraint type if successful, and -1 in case of an error.

Related topics
XPRBgetctrname, XPRBnewctr, XPRBsetctrtype.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 68

XPRBgetcutid

Purpose
Get the classification or identification number of a cut.

Synopsis
int XPRBgetcutid (XPRBcut cut);

Argument .
cut Reference to a previously created cut.

Return value
Classification or identification number.

Example
Get the classification or identification number of the cut cut1.

XPRBcut cutl;

int cid;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
cid = XPRBgetcutid(cutl);

Further information
This function returns the classification or identification number of a previously defined cut.

Related topics
XPRBnewcut, XPRBgetcuttype, XPRBgetcutrhs, XPRBsetcutid.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 69

XPRBgetcutrhs

Purpose
Get the RHS value of a cut.

Synopsis

double XPRBgetcutrhs (XPRBcut cut);
Argument .

cut Reference to a previously created cut.

Return value
Right hand side (RHS) value (default 0).

Example
Get the RHS value of the cut cut1.

XPRBcut cutl;

double rhs;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
rhs = XPRBgetcutrhs (cutl);

Further information
This function returns the RHS value (= constant term) of a previously defined cut. The default RHS
value is 0.

Related topics
XPRBnewcut, XPRBaddcutterm, XPRBgetcutid, XPRBgetcuttype

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 70

XPRBgetcuttype

Purpose
Get the type of a cut.

Synopsis
int XPRBgetcuttype (XPRBcut cut);

Argument
cut

Return value])
XPRB_L < (inequality)

XPRB_G > (inequality)
XPRB_E = (equation)
-1 An error has occurred,

Example
Get the type of cut1.

XPRBcut cutl;
int rtype;
XPRBprob expll;

Reference to a previously created cut.

expll = XPRBnewprob ("cutexample");

cutl XPRBnewcut (expll,
rtype = XPRBgetcuttype (cutl);

Further information

This function returns the type of the given cut.

Related topics

XPRB_E,

1);

XPRBnewcut, XPRBgetcutid, XPRBgetcutrhs, XPRBsetcuttype.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 71

XPRBgetdelayed

Purpose

Get the type of a constraint.

Synopsis

int XPRBgetdelayed (XPRBctr ctr);

Argument
ctr

Return vaolue

1
-1

Example

This determines whether ctr1 is an ordinary constraint or a delayed constraint.

Reference to a previously created constraint.

an ordinary constraint;
a delayed constraint;
an error has occurred.

XPRBprob prob;
XPRBctr ctrl;
int dstat;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
dstat = XPRBgetdelayed(ctrl);

Further information

This function indicates whether the given constraint is a delayed constraint or an ordinary

constraint.

Related topics

XPRBsetdelayed.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 72

XPRBgetdual

Purpose
Get dual value.

Synopsis
double XPRBgetdual (XPRBctr ctr);

Argument .
ctr Reference to a constraint.

Return value
Dual value for the constraint, 0 in case of an error.

Example

XPRBprob expl2;
XPRBctr ctr2;
XPRBarrvar tyl;
double dval;

expl2 = XPRBnewprob ("example2");

tyl = XPRBnewarrvar (expl2, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(expl2, "r2", tyl, XPRB_E, 9);
XPRBsolve (expl2, "1");

dval = XPRBgetdual (ctr2);

This obtains the dual value for the constraint ctr2.

Further information
This function returns the dual value for a constraint. The user may wish to test first whether this
constraint is part of the problem, for instance by checking that the row number is non-negative.
If this function is called after completion of a global search and an integer solution has been
found (that is, if function xPRBgetmipstat returns values XPRB_MIP_SOLUTION oOr
XPRB_MIP_OPTIMAL), it returns the value in the best integer solution. If no integer solution is
available after a global search this function outputs a warning and returns 0. In all other cases it
returns the dual value in the last LP that has been solved. If this function is used during the
execution of an optimization process (for instance in Optimizer library callback functions) it needs
to be preceded by a call to xPrREsync with the flag XPRB_XPRS_SOL.

Related topics
XPRBgetactivity, XPRBgetobjval, XPRBgetrcost, XPRBgetslack, XPRBgetsol, XPRBsync

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 73

XPRBgetidxel

Purpose
Get the index number of an index.

Synopsis
int XPRBgetidxel (XPRBidxset idx, char xname);
Arguments
idx A BCL set name
name Name of an index in the set.

Return value
Sequence number of the index in the set, or -1 if not contained.

Example

XPRBprob prob;
XPRBidxset iset;
int wval;

iset = XPRBnewidxset (prob, "Set",100);
XPRBaddidxel (iset, "first");
val = XPRBgetidxel (iset, "first");

This defines an index set, iset, with space for 100 entries, adds an index, first, to the set and
subsequently retrieves its sequence number.

Further information
An index element can be accessed either by its name or by its sequence number. This function
returns the sequence number of an index given its name.

Related topics
XPRBaddidxel, XPRBnewidxset.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 74

XPRBgetidxelname

Purpose
Get the name of an index.
Synopsis
const char *XPRBgetidxelname (XPRBidxset idx, int 1i);

Arguments .
idx A BCL index set.

i Index number.

Return value
Name of the i element in the set if function executed successfully, NULL otherwise.

Example

XPRBprob prob;
XPRBidxset iset;
const char =*name;

iset XPRBnewidxset (prob, "Set", 100);
name = XPRBgetidxelname (iset, 0);

This defines an index set, iset, with space for 100 entries and retrieves the name of the index set
element with sequence number 0.

Further information

An index element can be accessed either by its name or by its sequence number. This function
returns the name of an index set element given its sequence number.

Related topics
XPRBaddidxel, XPRBgetidxsetname, XPRBgetidxel, XPRBnewidxset.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 75

XPRBgetidxsetname

Purpose
Get the name of an index set.

Synopsis
const char *XPRBgetidxsetname (XPRBidxset idx);

Argument .
idx A BCL index set.
Return value
Name of the index set if function executed successfully, NULL otherwise.

Example
The following defines an index set, iset, with space for 100 entries and then retrieves its name.

XPRBprob prob;
XPRBidxset iset;
const char +name;

iset = XPRBnewidxset (prob, "Set", 100);
name XPRBgetidxsetname (iset) ;

Further information
This function returns the name of an index set.

Related topics
XPRBgetidxelname, XPRBgetidxsetsize, XPRBnewidxset.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 76

XPRBgetidxsetsize

Purpose
Get the size of an index set.

Synopsis
int XPRBgetidxsetsize (XPRBidxset idx);

Argument .
idx A BCL index set.

Return value
Size (= number of elements) of the set, -1 in case of an error.

Example
The following defines an index set with space for 100 elements and then retrieves its size.

XPRBprob prob;
XPRBidxset iset;
int size;

iset = XPRBnewidxset (prob, "Set", 100);
size XPRBgetidxsetsize (iset);

Further information
This function returns the current number of elements in an index set. This value does not
necessarily correspond to the size specified at the creation of the set. The returned value may be
smaller if fewer elements than the originally reserved number have been added, or larger if more
elements have been added. (In the latter case, the size of the set is automatically increased.)

Related topics
XPRBaddidxel,XPRBgetidxsetname, XPRBnewidxset.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 77

XPRBgetiis

Purpose
Get the variables and constraints of an IIS.

Synopsis
int XPRBgetiis (XPRBprob prob, XPRBvar xxarrvar, int *numv, XPRBctr
*xarrctr, int *numc, int numiis);

Arguments
prob Reference to a problem.

arrvar Reference to a table of BCL variables (may be NULL).

numv Reference to an integer that gets assigned the number of variables returned by the
function (may be NULL).

arrctr Reference to a table of BCL constraints (may be NULL).

numc Reference to an integer that gets assigned the number of constraints returned by the
function (may be NULL).

numiis Sequence number of the IIS or value 0 to access the IIS approximation.

Return value
0 if function executed successfully, 1 otherwise.

Example

The following prints out the variable and constraint names of the first IIS found for an infeasible
LP problem.

XPRBprob expl2;
XPRBctr *iisctr;
XPRBvar =*iisvar;
int numv, numc;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "");
if (XPRBgetlpstat (expl2)==XPRB_LP_INFEAS)
{

XPRBgetiis (expl2, &iisvar, &numv, &iisctr, &numc, 1);

printf ("Variables: "); /+ Print all variables «/

for (i=0; i<numv; i++) printf ("%$s ", XPRBgetvarname (iisvarl[il]));
printf ("\n");

free(iisvar); /+ Free the array of variables */
printf ("Constraints: "); /* Print all constraints =/

for (i=0; i<numc; i++) printf("%s ", XPRBgetctrname (iisctr[il]));
printf ("\n");

free(iisctr); /+ Free the array of constraints =/

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 78

Further information

1. This function returns the variables and constraints forming an IS (irreducible infeasible set) in

an infeasible LP problem. The number of independent IIS identified by Xpress-Optimizer can be
obtained with function xPrRBgetnumiis.

2. The arrays of variables and constraints that are allocated by this function must be freed by the
user’s program.

3. The counting of IIS starts at 1. Value 0 for the argument numiis returns the information about
the IIS approximation. Negative values or values larger than the number of IIS identified for the
problem return 0 for the numbers of variables and constraints.

Related topics
XPRBgetnumiis, XPRBgetlpstat.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 79

XPRBgetindicator

Purpose
Get the type of an indicator constraint.

Synopsis
int XPRBgetindicator (XPRBctr ctr);

Argument . .
ctr Reference to a previously created constraint.

Return value))
0 an ordinary constraint;

1 an indicator constraint with condition b = 1;
-1 an indicator constraint with condition b = 0;
-2 an error has occurred.

Example

XPRBprob prob;
XPRBctr ctrl;
int istat;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);
istat = XPRBgetindicator(ctrl);

This determines whether ctr1 is an ordinary constraint or an indicator constraint.

Further information
This function indicates whether the given constraint is an indicator constraint or an ordinary
constraint. In the case of an indicator constraint the return value also specifies the sense of the
condition.

Related topics
XPRBgetindvar, XPRBsetindicator

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 80

XPRBgetindvar

Purpose
Get the variable associated with an constraint.

Synopsis
XPRBvar XPRBgetindvar (XPRBctr ctr);

Argument . .
ctr Reference to a previously created constraint.

Return value
The indicator variable or NULL in case of an error.

Example

XPRBprob prob;
XPRBctr ctrl;
XPRBvar x;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);
if (XPRBgetindicator (ctrl)==-1)
{

X

XPRBgetindvar (ctrl);

printf ("$s=0 -> %s\n", XPRBgetvarname (x), XPRBgetctrname (ctrl));
}
if (XPRBgetindicator (ctrl)==1)
{

X

XPRBgetindvar (ctrl);

printf ("$s=1 -> %s\n", XPRBgetvarname (x), XPRBgetctrname (ctrl));
}

This prints out the name of the indicator variable associated with the indicator constraint ctr1
and the sense of the implication.

Further information
This function returns the indicator variable associated with an indicator constraint.

Related topics
XPRBgetindicator, XPRBsetindicator

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 81

XPRBgetlim

Purpose

Get the integer limit for a partial integer or the semi-continuous limit for a semi-continuous or

semi-continuous integer variable.

Synopsis
int XPRBgetlim (XPRBvar var, double xlim);

Arguments .
var BCL reference to a variable.

lim Limit value.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBvar x3;
double vlim;

x3 = XPRBnewvar (prob, XPRB_SC, "abc4", 0, 50);

XPRBgetlim (x3, &vlim);

This obtains the lower bound of the continuous part of the variable x3.

Further information

This function returns the currently defined integer limit for a partial integer variable or the lower

semi-continuous limit for a semi-continuous or semi-continuous integer variable.

Related topics

XPRBfixvar, XPRBgetbounds, XPRBset 1lb, XPRBset 1im, XPRBsetub.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 82

XPRBgetlpstat

Purpose

Get the LP status.

Synopsis

int XPRBgetlpstat (XPRBprob prob);

Argument
prob

Return vaolue

Reference to a problem.

the problem has not been loaded, or error;

XPRB_LP_OPTIMAL LP optimal;

XPRB_LP_INFEAS LP infeasible;

XPRB_LP_CUTOFF the objective value is worse than the cutoff;
XPRB_LP_UNFINISHED LP unfinished;

XPRB_LP_UNBOUNDED LP unbounded,;
XPRB_LP_CUTOFF_IN_DUAL LP cutoff in dual.

XPRB_LP_UNSOLVED QP problem matrix is not semi-definite.

Example

The following returns the current LP status.

XPRBprob expl2;
int status;

expl2 = XPRBnewprob ("example2");
XPRBsolve (expl2, "1");
status = XPRBgetlpstat (expl2);

Further information

The return value of this function provides LP status information from the Xpress-Optimizer.

Related topics

XPRBgetmipstat, XPRBgetprobstat.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 83

XPRBgetmipstat

Purpose
Get the MIP status.

Synopsis

int XPRBgetmipstat (XPRBprob prob);

Argument

prob Reference to a problem.

Return value
XPRB_MIP_NOT_LOADED

XPRB_MIP_LP_NOT_OPTIMAL
XPRB_MIP_LP_OPTIMAL
XPRB_MIP_NO_SOL_FOUND
XPRB_MIP_SOLUTION

XPRB_MIP_INFEAS
XPRB_MIP_OPTIMAL

Example

problem has not been loaded, or error;

LP has not been optimized;

LP has been optimized;

global search incomplete — no integer solution found;

global search incomplete, although an integer solution has been
found;

global search complete, but no integer solution found;
global search complete and an integer solution has been found.

The following returns the current MIP status.

XPRBprob expl2;
int status;
expl2

XPRBnewprob ("example2") ;

XPRBsolve (expl2, "g");

status

Further information

XPRBgetmipstat (expl2) ;

This function returns the global (MIP) status information from the Xpress-Optimizer.

Related topics

XPRBgetlpstat, XPRBgetprobstat.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved. page 84

XPRBgetmodcut

Purpose

Get the type of a constraint.

Synopsis

int XPRBgetmodcut (XPRBctr ctr);

Argument
ctr

Return vaolue

1
-1

Example

This determines whether ctr1 is an ordinary constraint or a model cut.

Reference to a previously created constraint.

an ordinary constraint;
a model cut;
an error has occurred.

XPRBprob prob;
XPRBctr ctrl;
int mcstat;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
mcstat = XPRBgetmodcut (ctrl);

Further information
This function indicates whether the given constraint is a model cut or an ordinary constraint.

Related topics

XPRBsetmodcut.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 85

XPRBgetnumiis

Purpose
Get the number of independent IIS in an infeasible LP problem.

Synopsis
int XPRBgetnumiis (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
Number of independent IIS found by Xpress-Optimizer, or a negative value in case of error.

Example
The following gets the number of IIS for a problem.

XPRBprob expl2;
int num;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "");
if (XPRBgetlpstat (expl2)==XPRB_LP_INFEAS)
num = XPRBgetnumiis (expl2);

Further information
This function returns the number of independent IIS (irreducible infeasible sets) of an infeasible

LP problem. After retrieving the number of IIS, the variables and constraints in each set can be
obtained with function xPrRBget iis.

Related topics
XPRBgetiis, XPRBgetlpstat.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 86

XPRBgetobijval

Purpose
Get the objective function value.

Synopsis
double XPRBgetobjval (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
Current objective function value, default and error return value: 0.

Example
The following provides an example of retrieving the objective function value.

XPRBprob expl2;
double obijval;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "1");
objval = XPRBgetobijval (expl2);

Further information
This function returns the current objective function value from the Xpress-Optimizer. If it is called
after completion of a global search and an integer solution has been found (that is, if function
¥PRBgetmipstat returns values XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the
value of the best integer solution. In all other cases, including during a global search, it returns
the solution value of the last LP that has been solved. If this function is used during the execution
of an optimization process (for instance in Optimizer library callback functions) it needs to be
preceded by a call to xPrREsync with the flag XxPRB_XPRS_SOL.

Related topics
XPRBgetdual, XPRBgetrcost, XPRBgetsol, XPRBgetslack, XPRBgetact, XPRBsync.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 87

XPRBgetprobname

Purpose

Get the name of the specified problem.

Synopsis

const char xXPRBgetprobname (XPRBprob prob);

Argument

prob Reference to a problem.

Return value

Name of the problem if function executed successfully, NULL otherwise.

Example

XPRBprob expl2;

const char xpbname;

XPRBnewprob ("example2") ;
XPRBgetprobname (expl2) ;

expl?2
pbname
printf ("%s"

This returns the name of the active problem and prints as output, example2.

Related topics

XPRBdelprob, XPRBnewname, XPRBnewprob.

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 88

XPRBgetprobstat

Purpose
Get the problem status.

Synopsis
int XPRBgetprobstat (XPRBprob prob);

Argument
prob Reference to a problem.

Return value

Bit-encoded BCL status information:
XPRB_GEN the matrix has been generated;

XPRB_DIR directives have been added;
XPRB_MOD the problem has been modified;
XPRB_SOL the problem has been solved.

Example
The following retrieves the current problem status and (re)solves the problem if it has been
modified.

XPRBprob expl2;
int status;

expl2 = XPRBnewprob ("example2");

status = XPRBgetprobstat (expl2);

if ((status&XPRB_MOD)==XPRB_MOD)
XPRBsolve (expl2, "");

Further information
This function returns the current BCL problem status. Note that the problem status uses
bit-encoding contrary to the LP and MIP status information, because several states may apply at
the same time.

Related topics
XPRBgetlpstat, XPRBgetmipstat.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 89

XPRBgetrange

Purpose
Get the range values for a range constraint.

Synopsis
int XPRBgetrange (XPRBctr ctr, double xbdl, double xbdu);
Arguments .
ctr Reference to a range constraint.
bdl Lower bound on the range constraint. May be NULL if not required.
bdu Upper bound on the range constraint. May be NULL if not required.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBctr ctr2;
XPRBarrvar tyl;
double bdl, bdu;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum (prob, "r2", tyl, XPRB_E, 9);
XPRBgetrange (ctr2, &bdl, &bdu);

This obtains the range values for ctr2.

Further information
This function returns the range values of the given constraint. If bdl or bdu is set to NULL, no
value is returned into the corresponding argument.

Related topics
XPRBsetrange.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 90

XPRBgetrcost

Purpose

Get reduced cost value for a variable.

Synopsis

double XPRBgetrcost (XPRBvar var) ;

Argument

Return v

Example

var Reference to a variable.

alue
Reduced cost value for the variable, 0 in case of an error.

XPRBprob expl2;
XPRBvar x1;
double rcval;

expl2 = XPRBnewprob ("example2");

x1 = XPRBnewvar (expl2, XPRB_UI, "abc3", 1, 100);
XPRBsolve (expl2, "1");

rcval = XPRBgetrcost (x1);

This retrieves the reduced cost value for the variable x1 in the solution to the LP problem.

Further information

This function returns the reduced cost value for a variable. The user may wish to test first

whether this variable is part of the problem, for instance by checking that the column number is

non-negative.

If this function is called after completion of a global search and an integer solution has been

found (that is, if function xPRBgetmipstat returns values XPRB_MIP_SOLUTION oOr

XPRB_MIP_OPTIMAL), it returns the value in the best integer solution. If no integer solution is
available after a global search this function outputs a warning and returns 0. In all other cases it
returns the reduced cost value in the last LP that has been solved. If this function is used during
the execution of an optimization process (for instance in Optimizer library callback functions) it

needs to be preceded by a call to xPrREsync with the flag XxPRB_XPRS_SOL.

Related topics

XPRBgetdual, XPRBgetobjval, XPRBgetslack, XPRBgetsol, XPRBsync.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 91

XPRBgetrhs

Purpose
Get the right hand side value of a constraint.

Synopsis
double XPRBgetrhs (XPRBctr ctr);

Argument . .
ctr Reference to a previously created constraint.

Return value
Right hand side value of the constraint, 0 in case of an error.

Example
The following retrieves the right hand side value of the constraint ctri.

XPRBprob prob;
XPRBctr ctrl;
double rhs;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
rhs = XPRBgetrhs(ctrl);

Further information
This function returns the right hand side value (i.e. the constant term) of a previously defined
constraint. The default right hand side value is 0. If the given constraint is a ranged constraint
this function returns its upper bound.

Related topics
XPRBaddterm, XPRBgetctrtype, XPRBsetctrtype, XPRBsetterm.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 92

XPRBgetrownum

Purpose
Get the row number for a constraint.

Synopsis
int XPRBgetrownum (XPRBctr ctr);

Argument . .
ctr Reference to a previously created constraint.

Return value
Row number (non-negative value), or a negative value.

Example
The following gets the row number of ctri.

XPRBprob prob;
XPRBctr ctrl;

int rindex;
ctrl = XPRBnewctr (prob, "rl", XPRB_E);
rindex = XPRBgetrownum(ctrl);

Further information
This function returns the matrix row number of a constraint. If the matrix has not yet been
generated or the constraint is not part of the matrix (constraint type XPRB_N or no non-zero
terms) then the return value is negative. To check whether the matrix has been generated, use
function xPrRERgetprobstat. The counting of row numbers starts with 0.

Related topics
XPRBdelctr, XPRBnewctr.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 93

XPRBgetsense

Purpose
Get the sense of the objective function.

Synopsis
int XPRBgetsense (XPRBprob prob);

Argument
prob Reference to a problem.

Return value L L o
XPRB_MAXIM the objective function is to be maximized;

XPRB_MINIM the objective function is to be minimized;
-1 an error has occurred.

Example
The following returns the sense of the problem exp12.

XPRBprob expl2;
int dir;
expl2 = XPRBnewprob ("example2");

dir = XPRBgetsense (expl?2);

Further information

This function returns the objective sense (maximization or minimization). The sense is set to
minimization by default and may be changed with functions xPrEsetsense, XPREminim, and

XPRBmaxim.

Related topics
XPRBmaxim, XPRBminim, XPRBsetsense, XPRBsolve

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved.

page 94

XPRBgetslack

Purpose
Get slack value for a constraint.

Synopsis
double XPRBgetslack (XPRBctr ctr);

Argument .
ctr Reference to a constraint.

Return value
Slack value for the constraint, 0 in case of an error.

Example

XPRBprob expl2;
XPRBctr ctr2;
XPRBarrvar tyl;
double slack;

expl2 = XPRBnewprob ("example2");

tyl = XPRBnewarrvar (expl2, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(expl2, "r2", tyl, XPRB_E, 9);
XPRBsolve (expl2, "1");

slack = XPRBgetslack(ctr2);

This obtains the slack value for the constraint ctr2.

Further information
This function returns the slack value for a constraint. The user may wish to test first whether this
constraint is part of the problem, for instance by checking that the row number is non-negative.
If this function is called after completion of a global search and an integer solution has been
found (that is, if function xPRBgetmipstat returns values XPRB_MIP_SOLUTION oOr
XPRB_MIP_OPTIMAL), it returns the value in the best integer solution. If no integer solution is
available after a global search this function outputs a warning and returns 0. In all other cases it
returns the slack value in the last LP that has been solved. If this function is used during the
execution of an optimization process (for instance in Optimizer library callback functions) it needs
to be preceded by a call to xPrEsync with the flag XPRB_XPRS_SOL.

Related topics
XPRBgetact, XPRBgetdual, XPRBgetobjval, XPRBgetrcost, XPRBgetsol, XPRBsync.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 95

XPRBgetsol

Purpose
Get solution value for a variable.

Synopsis
double XPRBgetsol (XPRBvar var);

Argument .
var Reference to a variable.

Return value
Primal solution value for the variable, 0 in case of an error.

Example

XPRBprob expl2;
XPRBvar x1;
double solval;

expl2 = XPRBnewprob ("example2");

x1 = XPRBnewvar (expl2, XPRB_UI, "abc3", 1, 100);
XPRBsolve (expl2, "1");

solval = XPRBgetsol (x1);

The example retrieves the LP solution value for the variable x1.

Further information

1. This function returns the current solution value for a variable. The user may wish to test first

whether this variable is part of the problem, for instance by checking that the column number is
non-negative.
If this function is called after completion of a global search and an integer solution has been
found (that is, if function xPRERgetmipstat returns values XPRB_MIP_SOLUTION or XPRB_MIP_—
OPTIMAL), it returns the value of the best integer solution. If no integer solution is available after
a global search this function outputs a warning and returns 0. In all other cases it returns the
solution value in the last LP that has been solved. If this function is used during the execution
of an optimization process (for instance in Optimizer library callback functions) it needs to be
preceded by a call to xPrREsync with the flag XxPRB_XPRS_SOL.

2. Note that “integer solution” means “solution within the integer feasibility limits”, that means
for any comparison of solution values the current Optimizer tolerance settings have to be taken
into account. So care must be taken when handling the solution values of integer variables. For
example, you cannot simply treat the value as an integer, because a value such as 0.999998, may
well be truncated to zero. Instead, you must make sure you round the value to the nearest integer.

Related topics
XPRBgetact, XPRBgetdual, XPRBgetobjval, XPRBgetrcost, XPRBgetslack, XPRBsync

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 96

XPRBgetsosname

Purpose
Get the name of a SOS.

Synopsis

const char xXPRBgetsosname (XPRBsos sos);

Argument .
sos Reference to a previously created SOS.

Return value
Name of the SOS if function executed successfully, NULL otherwise.

Example
XPRBprob prob;
XPRBsos setl;

setl = XPRBnewsos (prob, "sosl", XPRB_S1);
printf ("$s\n", XPRBgetsosname (setl));

The prints "sos1" as output.

Further information
This function returns the name of a SOS. If the user has not defined a name the default name
generated by BCL is returned.

Related topics
XPRBdelsos, XPRBgetsostype, XPRBnewsos

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 97

XPRBgetsostype

Purpose
Get the type of a SOS.
Synopsis
int XPRBgetsostype (XPRBsos sos) ;

Argument

sos Reference to a previously created SOS.

Return value

XPRB_S1 a Special Ordered Set of type 1;
XPRB_S2 a Special Ordered Set of type 2;
-1 an error has occurred.

Example

XPRBprob prob;
XPRBsos setl;
char stype;

setl =
Stype =

XPRBnewsos (prob, "sosl"
XPRBgetsostype (setl);

This returns the type of the SOS set1.

Further information
The function returns the type of a SOS.

Related topics
XPRBdelsos, XPRBget sosname, XPRBnewsos

, XPRB_S1);

BCL C library functions

(©2009 Fair Isaac Corporation. All rights reserved.

page 98

XPRBgettime

Purpose
Get the running time.

Synopsis
int XPRBgettime (void);

Return value
System time measure in milliseconds.

Example
The following provides an example of obtaining the running time for code.

int starttime;
starttime = XPRBgettime () ;

printf ("Time: \%g sec", (XPRBgettime ()-starttime)/1000);

Further information
This function returns the system time measure in milliseconds. The absolute value is
system-dependent. To measure the execution time of a program, this function can be used to
calculate the difference between the start time and the time at the desired point in the program.

Related topics
XPRBgetversion.

BCL C library functions (©2009 Fair Isaac Corporation. All rights reserved. page 99

XPRBgetvarlink

Purpose
Get the interface pointer of a variable.

Synopsis
void xXPRBgetvarlink (XPRBvar var);

Argument .
var Reference to a BCL variable

Return value
Pointer to an interface object, or NULL.

Example

Set the interface pointer of variable x1 to v1ink:

XPRBprob prob;
XPRBvar x1;
void *vlink;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3",

vlink = XPRBsetvarlink (x1);

Further information

This function returns the interface pointer of a variable to the indicated object. It may be used to

establish a connection between a variable in BCL and some other external program.

Related topics
XPRBsetvarlink, XPRBdefcbdelvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 100

XPRBgetvarname

Purpose
Get the name of a variable.

Synopsis

const char xXPRBgetvarname (XPRBvar var);
Argument .

var BCL reference to a variable.

Return value
Name of the variable if function executed successfully, NULL otherwise.

Example
This example prints the retrieved variable name.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
printf ("%$s\n", XPRBgetvarname (x1));

Further information

This function returns the name of a variable. If the user has not defined a name the default name
generated by BCL is returned.

Related topics
XPRBgetarrvarname, XPRBgetvartype, XPRBnewvar, XPRBsetvartype.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 101

XPRBgetvarrng

Purpose
Get ranging information for a variable.

Synopsis
double XPRBgetvarrng (XPRBvar var, int rngtype);

Arguments .
var Reference to variable.

rngtype The type of ranging information sought. This is one of:
XPRB_UPACT upper activity;
XPRB_LOACT lower activity;
XPRB_UUP upper unit cost;
XPRB_UDN lower unit cost
XPRB_UCOST upper cost;
XPRB_LCOST lower cost.

Return value
Ranging information of the required type.

Example
This example retrieves the upper cost value for a variable.

XPRBprob expl2;

XPRBvar x1;

double ucval;

expl2 = XPRBnewprob ("example2");

x1 = XPRBnewvar (expl2, XPRB_UI, "abc3", 1, 100);

XPRBsolve ("expl2, 1");
ucval = XPRBgetvarrng(xl, XPRB_UCOST);

Further information
This method can only be used after solving an LP problem. Ranging information for MIP problems
can be obtained by fixing all discrete variables to their solution values and re-solving the resulting
LP problem.

Related topics
XPRBnewvar, XPRBgetctrrng

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 102

XPRBgetvartype

Purpose

Get the type of a variable.

Synopsis

int XPRBgetvartype (XPRBvar var) ;

Argument

Return value
XPRB_PL

XPRB_BV
XPRB_UI
XPRB_PI
XPRB_SC
XPRB_SI
-1

Example

var BCL reference to a variable.

continuous;

binary;

general integer;

partial integer;
semi-continuous;
semi-continuous integer;
an error has occurred.

XPRBprob prob;
XPRBvar x1;
char vtype;

x1

= XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);

vtype = XPRBgetvartype (xl);

This returns the type of variable x1.

Further information

If the function exits successfully, the variable type is returned.

Related topics

XPRBnewvar, XPRBsetvartype.

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved.

page 103

XPRBgetversion

Purpose
Get the version number of BCL.

Synopsis

const char *XPRBgetversion (void);

Return value
BCL version number if function executed successfully, NULL otherwise.

Example
The following obtains the BCL version number, displaying output similarto 1.1.0.

const char *xversion;
version = XPRBgetversion();
printf ("%s",version);

Further information

This function returns the version number of BCL. This information is required if the user is
reporting a problem.

Related topics
XPRBgettime.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 104

XPRBgetXPRSprob

Purpose
Returns an XPRSprob problem reference for a problem defined in BCL and subsequently loaded
into the Xpress-Optimizer.

Synopsis
XPRSprob XPRBgetXPRSprob (XPRBprob prob);

Argument
prob The current BCL problem.

Return value
Reference to a problem in Xpress-Optimizer if function executed successfully, NULL otherwise.

Example
The Xpress-Optimizer problem reference needs to be retrieved to access control parameters and
optimizer problem attributes:

XPRBprob bcl_prob;
XPRSprob opt_prob;

bcl_prob = XPRBnewprob ("MyProb") ;

XPRBloadmat (bcl_prob);
opt_prob = XPRBgetXPRSprob (bcl_prob);
XPRSsetintcontrol (opt_prob, XPRS_PRESOLVE, 0);

Further information
The optimizer problem returned by this function may be different from the one loaded in BCL if
the solution algorithms have not been called (and the problem has not been loaded explicitly)
after the last modifications to the problem in BCL, or if any modifications have been carried out
directly on the problem in the optimizer.

Related topics
XPRBloadmat,XPRBnowprob,ChapterB.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 105

XPRBinit

Purpose
Initialize BCL.

Synopsis
int XPRBinit (void);

Return value .
0 function executed successfully,

1 an error has occurred,
32 BCL has been set running in Student mode.

Example

XPRBseterrctrl (0);
1f (XPRBinit ())
printf ("BCL has not been initialized correctly.
Please check your Xpress licenses.");

This switches to user error handling and initializes BCL (or performs license test).
Further information

1. This function explicitly initializes BCL, that is it tests whether a license for running this software
is available. It is possible to run BCL with a student license; this mode implies restrictions to the
available functionality and to the accepted problem size.

2. The initialization is also performed by function xPREnewprob so that usually there is no need to
call this explicit initialization. This function may be used if the embedding of BCL into some larger
application requires a test of the license at an earlier stage, before even creating any model.
Note that this function also initializes Xpress-Optimizer, so that it is usually not necessary to call
XPRSinit separately (the latter is only required if one wishes to continue using the optimizer
after terminating BCL).

Related topics
XPRBfree, XPRBnewprob, XPRSinit (see Optimizer Reference Manual).

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 106

XPRBloadbasis

Purpose
Load a previously saved basis.

Synopsis

int XPRBloadbasis (XPRBbasis basis);

Argument

basis Reference to a previously saved basis.

Return value

0 if function executed successfully, 1 otherwise.

Example

The following code saves the current basis prior to some matrix changes, before subsequently
reloading the saved basis to solve the linear relaxation.

XPRBprob expl2;
XPRBbasis basis;

expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "1");
basis = XPRBsavebasis (expl2);

XPRBloadmat (expl2) ;

XPRBloadbasis (basis) ;

XPRBdelbasis (basis);

XPRBsolve (expl2, "1");

Further information

This function loads a basis for the current problem. The basis must have been saved using

function xPrREsavebasis. Itis not possible to load a basis saved for any other problem than the
current one, even if the problems are similar. This function takes into account that the problem
may have been modified (addition/deletion of variables and constraints) since the basis has been
stored. For reading a basis from a file, the Optimizer library function XPRSreadbasis may be
used. Note that the problem has to be loaded explicitly (function xPrRE1cadmat) before the basis
is re-input with xPRBloadbasis. Furthermore, if the reference to a basis is not used any more it
should be deleted using function xPrRBdelbasis.

Related topics

XPRBdelbasis, XPRBsavebasis, XPRSreadbasis (see Optimizer Reference Manual),

XPRSwritebasis (see Optimizer Reference Manual).

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved.

page 107

XPRBloadmat

Purpose
Load the problem into the Xpress-Optimizer.

Synopsis
int XPRBloadmat (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example
Here the matrix is generated for problem exp12.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBloadmat (expl2) ;

Further information
This function calls the Optimizer library functions XPRS1oadlp, XPRS1loadqgp, XPRSloadglobal,
or XxPRSloadgglobal to transform the current BCL problem definition into a matrix in the
Xpress-Optimizer. Empty rows and columns are deleted before generating the matrix.
Semi-continuous (integer) variables are preprocessed: if a lower bound value greater than 0 is
given, then the variable is treated like a continuous (resp. integer) variable. Variables that belong
to the problem but do not appear in the matrix receive negative column numbers. Usually, it is
not necessary to call this function explicitly because BCL automatically does this conversion
whenever it is required. To force matrix reloading, a call to this function needs to be preceded by
a call to xPrEsync with the flag XPRB_XPRS_PROB.

Related topics
XPRBsynC,X?RBgetXPRSprob,Appendb(B.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 108

XPRBloadmipsol

Purpose

Synopsis

Load an integer solution into BCL or the Optimizer.

int XPRBloadmipsol (XPRBprob prob, double xsol, int ncol, int ifopt);

Arguments

Return vaOIue

Example

prob
sol
ncol

ifopt

Reference to a problem.
Array of size ncol holding the solution values.
Number of variables (continuous+discrete) in the problem.

Whether to load the solution into the Optimizer:
0 load into BCL only;
1 load solution into the Optimizer.

solution accepted,

solution rejected because it is infeasible,

solution rejected because it is cut off,

solution rejected because the LP reoptimization was interrupted,
solution rejected because an error occurred,

the given solution array does not have the expected size,

error loading solution into BCL.

Load a MIP solution for problem exp12 into BCL, but not into the Optimizer. We know that the
problem has 5 variables.

XPRBprob expl2;
double wvals[] = (1.5, 1, O, 4, 2.2};
expl2 = XPRBnewprob ("example2");

if (XPRBloadmipsol (expl2, wvals, 5, 0)!=0)
printf ("Loading the solution failed.\n");

Further information

Related topics
XPRBgetcolnum, XPRBloadmat, XPRBgetobjval, XPRBgetsol

This function loads a MIP solution from an external source (e.g., the Xpress MIP SOlution Pool)

into BCL or the Optimizer. The solution is given in the form of an array, indexed by the column
numbers of the decision variables. The size ncol of the array must correspond to the number of

columns in the matrix (generated by a call to xPrB1o0admat or by starting an optimization run
from BCL). If the solution is loaded into BCL the values are accepted as is, if the solution is loaded

into the Optimizer (i fopt = 1), the Optimizer will check whether the solution is acceptable and
recalculates the values for the continuous variables in the solution. In the latter case the solution
is loaded into BCL only once it has been successfully loaded and validated by the Optimizer.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 109

XPRBmaxim

Purpose
Maximize the objective function for the given problem.

Synopsis
int XPRBmaxim (XPRBprob prob, const char xflags);

Arguments
prob Reference to a problem.

flags Choice of the solution algorithm, which may be one of:

" " solve the problem using the recommended LP/QP algorithm (MIP problems remain
in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1" relax all global entities (integer variables etc) in a MIP/MIQP problem and solve it as
a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem is solved
without this flag, only the initial LP/QP problem will be solved.

Return value
0 if function executed successfully, 1 otherwise.

Example
Maximize the LP problem using a Newton-Barrier algorithm.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBmaxim (expl2, "b");

Further information
This function selects and starts the Xpress-Optimizer solution algorithm. The characters indicating
the algorithm choice may be combined where it makes sense, e.g. "dg. If the matrix loaded in the
Optimizer does not correspond to the current state of the specified problem it is regenerated
automatically prior to the start of the algorithm. Matrix reloading can also be forced by calling
xPRBsync before the optimization. Before solving a problem, the objective function must be
selected with xPrRBsetob. Note that if you use an incomplete global search you should finish
your program with a call to the Optimizer library function XxPRSinitglobal in order to remove
all search tree information that has been stored. Otherwise you may not be able to rerun your
program.

Related topics
XPRBgetobjval, XPRBgetsol, XPRBminim, XPRBsetsense, XPRSmaxim (see Optimizer
Reference Manual).

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 110

XPRBminim

Purpose
Minimize the objective function for the given problem.

Synopsis
int XPRBminim (XPRBprob prob, char xflags);

Arguments
prob Reference to a problem.

flags Choice of the solution algorithm, which may be one of:

" " solve the problem using the recommended LP/QP algorithm (MIP problems remain
in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1" relax all global entities (integer variables etc) in a MIP/MIQP problem and solve it as
a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem is solved
without this flag, only the initial LP/QP problem will be solved.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code minimizes the objective function of exp12 using the Newton barrier
algorithm.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBminim (expl2, "b");

Further information
This function selects and starts the Xpress-Optimizer solution algorithm. The flags indicating the
algorithm choice may be combined where it makes sense, e.g. "dg. If the matrix loaded in the
Optimizer does not correspond to the current state of the specified problem it is regenerated
automatically prior to the start of the algorithm. Matrix reloading can also be forced by calling
¥PRBsync before the optimization. Before solving a problem, the objective function must be
selected with xPrRBsetob. Note that if you use an incomplete global search you should finish
your program with a call to the Optimizer library function XxPRSinitglobal in order to remove
search tree information that has been stored, or else you may not be able to rerun your program.

Related topics
XPRBgetobjval, XPRBgetsol, XPRBmaxim, XPRBsetsense, XPRBsolve, XPRBsync,
XPRSminim (see Optimizer Reference Manual).

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 111

XPRBnewarrsum

Purpose
Create a sum constraint with individual coefficients.

Synopsis
XPRBctr XPRBnewarrsum (XPRBprob prob, const char xname,
XPRBarrvar av, double xcof, int grtype, double rhs);

Arguments
prob Reference to a problem.

name The constraint name (of unlimited length). May be NULL if not required.

av Reference to an array of variables.
cof Array of constant coefficients for all elements of av. It must be at least the same size as
av.

artype Type of the constraint, which must be one of:
XPRB_L ‘less than or equal to’ constraint;
XPRB_G ‘greater than or equal to’ constraint;
XPRB_E equality constraint;
XPRB_N non-binding constraint (objective function).
rhs The right hand side value of the constraint.

Return value
Reference to the new constraint if function executed successfully, NULL otherwise.

Example
The following creates the constraint Z?:o G-ty1;>7.0.

XPRBprob prob;

XPRBctr ctr4;

XPRBarrvar tyl;

double c[] = {2.5, 4.0, 7.2, 3.0, 1.8};

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr4d = XPRBnewarrsum(prob, "r4", tyl, c, XPRB_G, 7.0);

Further information
This function creates a linear constraint consisting of the sum over variables multiplied by the
coefficients indicated by array cof. This function replaces xPREnewct r and xPRBaddterm. If the
indicated name is already in use, BCL adds an index to it. If no constraint name is given, BCL
generates a default name starting with cTR. (The generation of unique names will only take
place if the names dictionary is enabled, see xPREsetdictionarysize.)

Related topics
XPRBdelctr, XPRBnewctr, XPRBnewprec, XPRBnewsum, XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 112

XPRBnewarrvar

Purpose
Create a one-dimensional array of variables.

Synopsis
XPRBarrvar XPRBnewarrvar (XPRBprob prob, int nbvar, int type,
const char xname, double bdl, double bdu);

Arguments
prob Reference to a problem.

nbvar Size of the array of variables.
type Type of the variables, which may be one of:
XPRB_PL continuous;
XPRB_BV binary;
XPRB_UI general integer;
XPRB_PI partial integer;
XPRB_SC semi-continuous;
XPRB_SI semi-continuous integer.

name The array name. May be NULL if not required.
bdl Variable lower bound.
bdu Variable upper bound.

Return value
Reference to the new array of variables if function executed successfully, NULL otherwise.

Example
The following defines an array of ten continuous variables between 0 and 500, with names
beginning arry1 followed by a counter.

XPRBprob prob;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 10, XPRB_PL, "arryl", 0, 500);

Further information

1. This function creates a single-indexed array of variables. Individual bounds on variables
may be changed afterwards using xPrRBset1b and XPRBsetub, and variable types by using
¥PRBsetvartype. The function returns the BCL reference to the array of variables. If name is
defined, BCL generates names for the variables in the array by adding an index to the string. If
no array name is given, BCL generates a default name starting with av. (The generation of unique
names will only take place if the names dictionary is enabled, see XxPRRsetdictionarysize.)

2. Either of the bounds XPRB_INFINITY or —-XPRB_INFINITY for plus or minus infinity may be used

for the arguments bdu and bd1.

Related topics
XPRBdelarrvar, XPRBendarrvar, XPRBstartarrvar, XPRBsetdictionarysize.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 113

XPRBnewctr

Purpose
Create a new constraint.

Synopsis
XPRBctr XPRBnewctr (XPRBprob prob, const char xname, int qgrtype);

Arguments
prob Reference to a problem.

name The constraint name (of unlimited length). May be NULL if not required.

type Type of the constraint, which must be one of
XPRB_L ‘less than or equal to’ inequality;
XPRB_G ‘greater than or equal to’ inequality;
XPRB_E equality;
XPRB_N a non-binding row (objective function).

Return value
Reference to the new constraint if function executed successfully, NULL otherwise.

Example
The following creates a new equality constraint.

XPRBprob prob;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);

Further information
This function creates a new constraint and returns the reference to this constraint, i.e., the
constraint’s model name. It has to be called before xPrRRaddterm orxPRBaddgterm is used to
add terms to the constraint. Range constraints can first be created with any type and then
converted using the function xPrBsetrange. If the indicated name is already in use, BCL adds an
index to it. If no constraint name is given, BCL generates a default name starting with CTr. (The
generation of unique names will only take place if the names dictionary is enabled, see
XPRBsetdictionarysize.)

Related topics
XPRBaddterm, XPRBdelctr, XPRBdelterm, XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 114

XPRBnewcut

Purpose
Create a new cut.

Synopsis
XPRBcut XPRBnewcut (XPRBprob prob, int grtype, int mtype);

Arguments
prob Reference to a problem.

agrtype Type of the cut:
XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)
mtype Cut classification or identification number.

Return value
Reference to the new cut of type xbcut if function executed successfully, NULL otherwise.

Example
The example shows how to create a new equality cut.

XPRBcut cutl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);

Further information
This function creates a new cut and returns the reference to this cut, i.e. the cut's model name. It
has to be called before xPrRBaddcutterm is used to add terms to the cut.

Related topics
XPRBaddcutterm, XPRBdelcut, XPRBaddcuts.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 115

XPRBnewcutarrsum

Purpose
Create a sum cut with individual coefficients (3, ¢; - x;).

Synopsis
XPRBcut XPRBnewcutarrsum (XPRBprob prob, XPRBarrvar av, double =xcof,
grtype, double rhs, int mtype);

Arguments
prob Reference to a problem.
av Reference to an array of variables.
cof Array of constant coefficients for all elements of (at least size of av).

artype Type of the cut:
XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)
rhs RHS value of the cut.

mtype Cut classification or identification number.

Return value
Reference to the new cut if function executed successfully, NULL otherwise.

Example
The following creates the inequality constraint Z;LO G-tyl; >17.

XPRBcut cut4;

XPRBarrvar tyl;

double c[] = {2.5, 4.0, 7.2, 3.0, 1.8};

tyl = XPRBnewarrvar (5, XPRB_PL, "arryl", 0, 500);
cut4 = XPRBnewcutarrsum(tyl, c, XPRB_G, 7.0, 18);

Further information

char

This function creates a cut consisting of the sum over variables multiplied by the coefficients

indicated by array cof. This function replaces xPrREnewcut and xPRBaddcutterm.

Related topics
XPRBnewcut, XPRBaddcutterm.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 116

XPRBnewcutprec

Purpose
Create a precedence cut (v + dur < vy).

Synopsis
XPRBcut XPRBnewcutprec (XPRBprob prob, XPRBvar vl, double dur, XPRBvar v2,
int mtype);
Arguments
prob Reference to a problem.
v1l,v2 References to two variables.
dur Double or integer constant.

mtype Cut classification or identification number.

Return value
Reference to the newly created cut if function executed successfully, NULL otherwise.

Example
The following creates the inequality constraint ty1, + 5.4 < ty1,4.

XPRBcut cutb5;

XPRBarrvar tyl;

tyl XPRBnewarrvar (5, XPRB_PL, "arryl", 0, 500);
cut5 = XPRBnewcutprec(tyl[2], 5.4, tyl[4], 5);

Further information
This function creates a so-called precedence constraint (where the variable plus constant is not
larger than a second variable). This function replaces xPRBnewcut and XxPRBaddcutterm.

Related topics
XPRBnewcut, XPRBaddcutterm.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 117

XPRBnewcutsum

Purpose
Create a sum cut (3_; x)).

Synopsis

XPRBcut XPRBnewcutsum (XPRBprob prob, XPRBarrvar tv,

rhs, int mtype);

Arguments
prob Reference to a problem.
av Reference to an array of variables.

artype Type of the cut:
XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)
rhs RHS value of the cut.

mtype Cut classification or identification number.

Return value

char grtype, double

Reference to the new cut if function executed successfully, NULL otherwise.

Example
Create the equality constraint %, ty1; = 9.

XPRBcut cut?;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (5, XPRB_PL, "arryl",

cut2 = XPRBnewcutsum(tyl, XPRB_E, 9,

Further information

500);

This function creates a simple sum constraint over all entries of an array of variables. It replaces

calls to xPrRBnewcut and XPRRaddcutterm

Related topics
XPRBnewcut, XPRBaddcutterm.

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved. page 118

XPRBnewidxset

Purpose
Create a new index set.

Synopsis

XPRBidxset XPRBnewidxset (XPRBprob prob, const char xname, int maxsize);

Arguments
prob Reference to a problem.

name Name of the index set to be created. May be NULL if not required.
maxsize Maximum size of the index set.

Return value
Reference to the new index set if function executed successfully, NULL otherwise.

Example
The following defines an index set with space for 100 entries.

XPRBprob prob;
XPRBidxset iset;

iset = XPRBnewidxset (prob, "Set", 100);

Further information
This function creates a new index set. Note that the indicated size maxsize corresponds to the
space allocated initially to the set, but it is increased dynamically if need be. If the indicated set
name is already in use, BCL adds an index to it. If no name is given, BCL generates a default name
starting with 1DX. (The generation of unique names will only take place if the names dictionary is
enabled, see xPRBsetdictionarysize.)

Related topics
XPRBaddidxel, XPRBgetidxel, XPRBgetidxsetname, XPRBgetidxsetsize,
XPRBsetdictionarysize.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 119

XPRBnewname

Purpose
Compose a name string.

Synopsis

const char *XPRBnewname (const char xformat, ...);

Arguments L _ : :
format String indicating the printing format using standard C conventions (see the

documentation of print f in a C manual for a complete list of format options). Simple
formating options are of the form %n where n may be, for instance, one of

c single character;

d integer;

g double;

S string of characters.

items composing the name string according to the format specification in the format
string; separated by commas.

Return value
String of characters.

Example
This example finds the variable with name xab15.

XPRBprob prob;
char a[] = "ab";
int 1 = 15;
XPRBvar x1;

x1 = XPRBgetbyname (prob, XPRBnewname ("x%$s%d",a, i), XPRB_VAR);

Further information

1. This function simplifies the composition of names for BCL objects. It is intended to be used as a
parameter of other functions (wherever name strings are required). Unlike the standard C string
functions, this function does not require any memory allocation by the user, and the string re-
turned must not be freed by the user.

2. Names created with this function are limited to 128 characters. However, there is no restriction on
the length of names for BCL objects in general.

Related topics
XPRBdelprob, XPRBgetprobname, XPRBnewprob.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 120

XPRBnewprec

Purpose
Create a precedence constraint v1 + dur < v2.

Synopsis
XPRBctr XPRBnewprec (XPRBprob prob, const char sname, XPRBvar vl,
double dur, XPRBvar v2);

Arguments
prob Reference to a problem.

name The constraint name (of unlimited length). May be NULL if not required.

vl Reference to a variable.
dur Double or integer constant.
v2 Reference to a variable.

Return value
Reference to the new constraint if function executed successfully, NULL otherwise.

Example
The following creates the inequality constraint ty1, + 5.4 < ty1,.

XPRBprob prob;
XPRBctr ctr5;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr5 = XPRBnewprec (prob, "r5", tyl[2], 5.4, tyl[4]);

Further information
This function creates a so-called precedence constraint (where the first variable plus constant is
not larger than a second variable). This function replaces xPrREnewct r and xPrRBaddterm. If the
indicated name is already in use, BCL adds an index to it. If no constraint name is given, BCL
generates a default name starting with CTR. (The generation of unique names will only take
place if the names dictionary is enabled, see xPREsetdictionarysize.)

Related topics
XPRBnewarrsum, XPRBnewsum, XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 121

XPRBnewprob

Purpose
Initialize a new problem.

Synopsis
XPRBprob XPRBnewprob (const char xprobname);

Argument . .
probname The problem name. May be NULL if not required.

Return value
Reference to a problem definition in BCL if function executed successfully, NULL otherwise.

Example
This example begins the definition of a new problem with the name example?2.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

Further information

1. This function needs to be called to create and initialize a new problem. This function initializes
BCL and also Xpress-Optimizer; it is not necessary to call XPRSinit from the user’s program. If the
initialization does not find a valid license, BCL does not initialize. It is possible to run BCL with a
student license; this mode implies restrictions to the available functionality and to the accepted
problem size.

2. The name given to a problem determines the name and the location of the working files of Xpress-
Optimizer. At the creation of a problem any existing working files of the same name are deleted.
When solving several instances of a problem simultaneously the user must make sure to assign a
different name to every instance. If no problem name is indicated, BCL creates a unique name
including the full path to the temporary directory (Xpress-Optimizer creates its working files in
the temporary directory).

Related topics
XPRBdelprob, XPRBgetprobname, XPRBinit.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 122

XPRBnewsos

Purpose
Create a SOS.

Synopsis
XPRBsos XPRBnewsos (XPRBprob prob, const char xname, int type);

Arguments
prob Reference to a problem.

name The name of the set.

type The set type, which must be one of:
XPRB_S1 Special Ordered Set of type 1;
XPRB_S2 Special Ordered Set of type 2.

Return value
Reference to the new SOS if function executed successfully, NULL otherwise.

Example
The following creates an SOS of type 1, called sos1.

XPRBprob prob;
XPRBsos setl;

setl = XPRBnewsos (prob, "sosl", XPRB_S1);

Further information
This function creates a Special Ordered Set (SOS) of type 1 or 2 (abbreviated SOS1 and SOS2). It
returns the address of the set that is taken as a parameter in the functions for adding set
members, such as XxPRBaddsosel, deleting single elements xPrREdelsosel or the entire set
¥PRBdelsos. If the indicated name is already in use, BCL adds an index to it. If no name is given
for the set, BCL generates a default name starting with sos. (The generation of unique names
will only take place if the names dictionary is enabled, see xPrBsetdictionarysize.)

Related topics
XPRBdelsos, XPRBgetsosname, XPRBgetsostype, XPRBnewsosrc, XPRBnewsosw,
XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 123

XPRBnewsosrc

Purpose

Create a SOS, using a reference constraint.

Synopsis

XPRBsos XPRBnewsosrc (XPRBprob prob, const char *name, int type,

Arguments
prob

name

type

av

ctr

Return value

XPRBarrvar av, XPRBctr ctr);

Reference to a problem.
Name of the set.

The set type, which must be one of:

XPRB_S1 Special Ordered Set of type 1;
XPRB_S2 Special Ordered Set of type 2.

Array of variables. May be NULL if not required.

Reference to a constraint which has been previously defined. May be NULL of not
required.

Reference to the new SOS if function executed successfully, NULL otherwise.

Example

The following creates an SOS of type 2 with variables from the array ty1, and their coefficients in
the constraint ctr4.

XPRBprob prob;

XPRBsos set2;

XPRBctr ctr4;

XPRBarrvar tyl;

double c[] = {2.5, 4.0, 7.2, 3.0, 1.8};

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr4 XPRBnewarrsum (prob, "r4", tyl, c, XPRB_G, 7.0);
set2 = XPRBnewsosrc (prob, "sos2", XPRB_S2, tyl, ctrd);

Further information
This function can be used instead of a stepwise SOS definition if the variables are available in the
form of a single array and the model contains a constraint with nonzero coefficients for all
variables which can serve as a reference constraint. If no reference constraint is indicated all
weights are initialized to 1. If the indicated name is already in use, BCL adds an index to it. If no
name is given for the set, BCL generates a default name starting with sos. (The generation of
unique names will only take place if the names dictionary is enabled, see
XPRBsetdictionarysize.)

Related topics

XPRBdelsos, XPRBgetsosname, XPRBgetsostype, XPRBnewsos, XPRBnewsosw,

XPRBsetdictionarysize.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 124

XPRBnewsosw

Purpose
Create a SOS, using weights.

Synopsis
XPRBsos XPRBnewsosw (XPRBprob prob, const char xname, int type,
XPRBarrvar av, double *weight);

Arguments
prob Reference to a problem.

name The set name.

type The set type, which must be one of:
XPRB_S1 Special Ordered Set of type 1;
XPRB_S2 Special Ordered Set of type 2.
av An array of variables.

weight An array of weights. May be NULL if not required.

Return value
Reference to the new SOS if function executed successfully, NULL otherwise.

Example
The following creates an SOS of type 1, with the variables in array ty1 and weights, cr.

XPRBprob prob;

XPRBsos setl;

XPRBarrvar tyl;

double cr[] = {2.0, 13.0, 15.0, 6.0, 8.5};

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
setl = XPRBnewsosw (prob, "sosl", XPRB_S1, tyl, cr);

Further information
This function can be used instead of a stepwise SOS definition using functions xPRBnewsos and
¥PRBaddsosarrel, that is if the variables and their weights are available in the form of two
arrays. If no weights are defined, the reference values of the variables are set to 1. If the
indicated name is already in use, BCL adds an index to it. If no name is given for the set, BCL
generates a default name starting with sos. (The generation of unique names will only take
place if the names dictionary is enabled, see xPREsetdictionarysize.)

Related topics
XPRBdelsos, XPRBgetsosname, XPRBnewsos, XPRBnewsosrc, XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 125

XPRBnewsum

Purpose
Create a sum constraint.

Synopsis
XPRBctr XPRBnewsum (XPRBprob prob, const char xname, XPRBarrvar av,
int type, double rhs);
Arguments
prob Reference to a problem.

name The constraint name (of unlimited length). May be NULL if not required.

av Reference to an array of variables.
type Type of the constraint, which must be one of:
XPRB_L ‘less than or equal to’ constraint;

XPRB_G 'greater than or equal to’ constraint;

XPRB_E equality;

XPRB_N a non-binding row (objective function).
rhs Right hand side value of the constraint.

Return value
Reference to the new constraint if function executed successfully, NULL otherwise.

Example
The following creates a new constraint, ctr2, given by Z?:o ty1; =9.

XPRBprob prob;
XPRBctr ctr2;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(prob, "r2", tyl, XPRB_E, 9);

Further information
This function creates a simple sum constraint over all entries of an array of variables. It replaces
calls to xPRBnewct r and xPrRBaddterm. If the indicated name is already in use, BCL adds an
index to it. If no constraint name is given, BCL generates a default name starting with CTr. (The
generation of unique names will only take place if the names dictionary is enabled, see
XPRBsetdictionarysize.)

Related topics
XPRBnewarrsum, XPRBnewctr, XPRBnewprec, XPRBsetdictionarysize

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 126

XPRBnewvar

Purpose

Declare a single variable.

Synopsis

XPRBvar XPRBnewvar (XPRBprob prob, int type, const char *name,

Arguments
prob

type

name
bdl
bdu

Return value

double bdu) ;

Reference to a problem.

The variable type, which may be one of:

XPRB_PL continuous;

XPRB_BV binary;

XPRB_UI general integer;

XPRB_PI partial integer;

XPRB_SC semi-continuous;

XPRB_SI semi-continuous integer.

The variable name (of unlimited length). May be NULL if not required.
The variable’s lower bound.

The variable’s upper bound.

double bdl,

Reference to the new variable if function executed successfully, NULL otherwise.

Example

This defines an integer variable x1, taking values between 1 and 100, with the name abc3, and a
semi-continuous variable x2, taking the value 0 or values between 1 and 20, with the name kim2.

XPRBprob prob;
XPRBvar x1, x2;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
x2 = XPRBnewvar (prob, XPRB_SC, "klm2", 0, 20);

Further information

1. The creation of a variable in BCL involves not only its name but also its type and bounds (which
may be infinite, defined by the corresponding Xpress constants). The function returns the BCL
reference to the variable (i.e. a model variable). If the indicated name is already in use, BCL
adds an index to it. If no variable name is given, BCL generates a default name starting with
VAR. (The generation of unique names will only take place if the names dictionary is enabled, see
¥PRBsetdictionarysize.) If a partial integer, semi-continuous, or semi-continuous integer vari-
able is being created, the integer or semi-continuous limit (i.e. the lower bound of the continuous
part for partial integer and semi-continuous, and of the semi-continuous integer part for semi-
continuous integer) is set to the maximum of 1 and bd1l. This value can be subsequently modified

with the function xPRBset 1im.

2. The lower and upper bounds may take values of -xPRB_INFINITY and XPRB_INFINITY for minus

and plus infinity respectively.

Related topics

XPRBnewarrvar, XPRBsetvartype, XPRBstartarrvar, XPRBsetdictionary

size.

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved.

page 127

XPRBprintarrvar

Purpose
Print out an array of variables.

Synopsis

int XPRBprintarrvar (XPRBarrvar av);

Argument .
av Reference to an array of variables.

Return value
0 if function executed successfully, 1 otherwise.

Example
XPRBprob prob;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
XPRBprintarrvar (tyl);

The above prints names and bounds for all variables in the array ty1.

Further information
This function prints out all variables in the array (names and bounds or solution values). It is not
available in the student version.

Related topics
XPRBexportprob, XPRBprintctr, XPRBprintprob, XPRBprintvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 128

XPRBprintctr

Purpose
Print out a constraint.

Synopsis
int XPRBprintctr (XPRBctr ctr);

Argument .
ctr Reference to a constraint.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following prints out the constraint ctr2.

XPRBprob prob;
XPRBctr ctr2;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(prob, "r2", tyl, XPRB_E, 9);
XPRBprintctr(ctr2);

Further information
This function prints out a constraint in LP format. It is not available in the student version.

Related topics
XPRBexportprob, XPRBprintprob, XPRBprintarrvar, XPRBprintvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 129

XPRBprintcut

Purpose

Print out a cut.

Synopsis

int XPRBprintcut (XPRBcut cut);

Argument

cut Reference to a cut.

Return value

0 if function executed successfully, 1 otherwise.

Example

Print out the cut cut2.

XPRBcut cut?2;

XPRBarrvar tyl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");

tyl = XPRBnewarrvar (epll, 5, XPRB_PL, "arryl", 0, 500);
cut2 = XPRBnewcutsum(expll, tyl, XPRB_E, 9, 3);
XPRBprintcut (cut2);

Further information

This function prints out a cut in LP-format. It is not available in the Student Edition.

Related topics

XPRBnewcut.

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved.

page 130

XPRBprintf

Purpose

Print text and other program output.

Synopsis

int XPRBprintf (XPRBprob prob, const xformat, ...);

Arguments
prob

format

Return value

Reference to a problem.

String indicating the format of the text to be output. Format parameters are identical
to those of the C function printf.

Items to be printed according to the format specification in the format string, separated
by commas.

Number of characters printed, or -1 if output truncated.

Example

The following code outputs the string "New variable: abc3", followed by
"A real number: 1.3, an integer: 5" onthe next line.

XPRBprob prob;
XPRBvar x1;
double a=1.3;
int 1i=5;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
XPRBprintf (prob, "New variable: %s\n", XPRBgetvarname (x1));
XPRBprintf (prob, "A real number: %g, an integer: %d", a, 1);

Further information
This function prints out text, data etc. from the user’s program. It behaves like the C function

printf

defined,

Related topics

with the additional feature that whenever the printing callback xPrEdefcbmsg is
this callback is executed instead of printing to the standard output channel.

XPRBprintprob, XPRBreadlinecbh.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 131

XPRBprintidxset

Purpose
Print out an index set.

Synopsis
int XPRBprintidxset (XPRBidxset idx);

Argument .
idx Reference to an index set.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBidxset iset;

iset = XPRBnewidxset (prob, "Set", 100);
XPRBprintidxset (iset);

The above prints out the index set iset.

Further information
This function prints out an index set. It is not available in the student version.

Related topics
XPRBprintctr, XPRBprintf, XPRBprintsos, XPRBprintvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 132

XPRBprintobj

Purpose
Print out the current objective function of a problem.

Synopsis
int XPRBprintobj (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following prints out the objective function defined for problem exp12.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBprintobj(expl2) ;

Further information
This function prints out the objective function currently defined for the given problem. This
function is not available in the student version.

Related topics
XPRBsetobi.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 133

XPRBprintprob

Purpose
Print out the specified problem.

Synopsis
int XPRBprintprob (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following prints out the current problem definition.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBprintprob (expl2) ;

Further information
This function prints out the complete problem definition currently held in BCL, that means, the
list of constraints, any Special Ordered Sets that have been defined, and the objective function.
This function is not available in the student version.

Related topics
XPRBexportprob, XPRBprintf.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 134

XPRBprintsos

Purpose
Print out a Special Ordered Set.

Synopsis
int XPRBprintsos (XPRBsos so0s);

Argument .
sos Reference to a Special Ordered Set.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBsos setl;

setl = XPRBnewsos (prob, "sosl", XPRB_S1);
XPRBprintsos (setl);

This prints out the SOS set1.

Further information
This function prints out a Special Ordered Set. It is not available in the student version.

Related topics
XPRBprintctr, XPRBprintidxset, XPRBprintprob, XPRBprintvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 135

XPRBprintvar

Purpose
Print out a variable.

Synopsis
int XPRBprintvar (XPRBvar var);

Argument .
var BCL reference for a variable.

Return value
Number of characters printed.

Example
The following code outputs abc3[1.000,100.000], followed by abc4[0.000,5.000,50.000].

XPRBprob prob;
XPRBvar x1, x3;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
XPRBprintvar (x1) ;

x3 = XPRBnewvar (prob, XPRB_SC, "abc4", 0, 50);
XPRBsetlim (x3, 5);

XPRBprintvar (x3) ;

Further information
This function prints out a variable: name and bounds for continuous, binary and integer
variables; name, bounds and integer limit or lower semi-continuous limit for partial integer,
semi-continuous, and semi-continuous integer variables; or, where a solution has been computed,
name and solution value.

Related topics
XPRBprintctr, XPRBprintidxset, XPRBprintprob, XPRBprintsos.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 136

XPRBreadarrlinecb

Purpose

Synopsis

Arguments

Read a line of an array from a data file.

int XPRBreadarrlinecb (char =* (xfgs) (char x,int,void =), void =xfile,
int length, const char *format, void =*arrc, int size);

fgs The system’s fgets function (defined by XPRB_FGETS).
file Pointer to a data file.
length Maximum length of any text string to be read.

format String indicating the format of the data file to be read, consisting of one of the listed

values followed by a separator sign:

t [num] text up to next separator sign or space (blank/tabulator/line break), optionally
followed by the maximum string length to be read;

s[num] text marked by single quotes (* ’), optionally followed by the maximum
string length to be read;

S[num] text marked by double quotes (" "), optionally followed by the maximum
string length to be read,;

T[num] text, as for t, s, or S, depending on the first character read, optionally fol-
lowed by the maximum string length to be read,;

i integer value;

g real (float) value.
arrc Array of size at least size that receives the data that are read.
size Maximum number of data items to be read.

Return value

Example

Number of data items read.

double v1ist[10];
FILE *datafile;

datafile=fopen("filename", "xr");
XPRBreadlinecb (XPRB_FGETS, datafile, 120, "g ", vlist, 6);
fclose (datafile);

This opens a data file and reads a line of six double values separated by spaces, before closing the
file.

Further information

This function reads tables from data files in a format compatible with the diskdata command of
mp-model and Mosel. Data lines in the input file may be continued over several lines by using the
line continuation sign s. The input file may also contain comments (preceded by !) and empty
lines, both of which are skipped over. The data file is accessed with standard C functions (fopen,
fclose). The function reads up to size data items of the type indicated by the format
parameter. All string types in the format may (optionally) be followed by the maximum string
length to be read. Otherwise the maximum length is assumed to be 1ength. The type of
separator signs (e.g. , ; :) used in the data file needs to be given after the format option(s).
Array arrc is an array of the same type as the data to be read (int *, char «, or double =)
and of size at least size. With function xPrREsetdecsign the decimal sign used in the data
input may be changed, for instance to use a decimal comma.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 137

Related topics
XPRBreadlinecb, XPRBsetdecsign.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 138

XPRBreadlinecb

Purpose

Read a fixed-format line from a data file.

Synopsis

int XPRBreadlinecb (char = (xfgs) (char =*,int,void x), void =xfile,

Arguments
fgs

file
length

format

Return value

int length, const char xformat, ...);

The system'’s fgets function (defined by XPRB_FGETS).
Pointer to a data file.
Maximum length of any text string to be read.

String indicating the format of the data line to be read, which may be one of:

t [num] text up to next separator sign or space (blank / tab / line break), optionally
followed by the maximum string length to be read;

s[num]text marked by single quotes, * ', optionally followed by the maximum string
length to be read;

S[num] text marked by double quotes, " ", optionally followed by the maximum
string length to be read;

T[num]textasforzt, s, ors, depending on the first character read, optionally followed
by the maximum string length to be read;

i integer value;

g real (float) value.

The number of format parameters is arbitrary.

Addresses of items that are to be read, separated by commas.

Number of data items read.

Example

The following opens a data file for reading, reads a line with text and a double value, separated
by a semi-colon, and then reads a line with two integers and a string of up to ten characters

marked

by single quotes, all separated by blanks, before finally closing the file.

double value;
FILE xdatafile;
char name[100];
int 1i[2];

datafile=fopen ("filename", "xr");

XPRBreadlinecb (XPRB_FGETS, datafile, 99, "T;g", name, &value);

XPRBreadlinecb (XPRB_FGETS, datafile, 50, "i i s[10]", &i[O0],
&i[1], name);

fclose (datafile);

Further information
This function reads input data files in a format compatible with the diskdata command of
mp-model and Mosel. Data lines in the input file may be continued over several lines by using the
line continuation sign «. The input file may also contain comments (preceded by !) and empty
lines, both of which are skipped over. The data file is accessed with standard C functions (fopen,
fclose). The format string gives the type of data item to be read. Each string type may
(optionally) be followed by the maximum length to be read. Otherwise, the maximum length is
assumed to be 1length. The type of separator signs (e.g. , ; :) used in the data file needs to be
indicated between each pair of format options. As with the C functions print f or scanf, the
format string is followed by the addresses where the data are stored. With function

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 139

¥PRBsetdecsign the decimal sign used in the data input may be changed, for instance to use a
decimal comma.

Related topics
XPRBreadarrlinechb, XPRBsetdecsign.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 140

XPRBresetprob

Purpose

Release system resources used for storing solution information.
Synopsis

int XPRBresetprob (XPRBprob prob);
Argument

prob Reference to a problem.

Return value
0 if function executed successfully, 1 otherwise.

Example

The following resets and frees resources used by BCL and Xpress-Optimizer for storing solution
information:

XPRBprob expl2;
expl?2 = XPRBnewprob (NULL) :

XPRBsolve (expl2, "");

XPRBresetprob (expl?2) ;

Further information

This function deletes any solution information stored in BCL; it also deletes the corresponding
Xpress-Optimizer problem and removes any auxiliary files that may have been created by
optimization runs. It also resets the Optimizer control parameters for spare matrix elements
(EXTRACOLS, EXTRAROWS, and EXTRAELEMS) to their default values. The BCL problem definition
itself remains. This function may be used to free up memory if the solution information is not

required any longer but the problem definition is to be kept for later (re)use. To completely
delete a problem the function xPrRBdelprob needs to be used.

Related topics
XPRBdelprob, XPRBfinish.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 141

XPRBsavebasis

Purpose
Save the current basis.

Synopsis
XPRBbasis XPRBsavebasis (XPRBprob prob);

Argument
prob Reference to a problem.

Return value
Reference to the saved basis.

Example

XPRBprob expl2;
XPRBbasis basis;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "1");
basis = XPRBsavebasis (expl2);

This saves the current basis.

Further information
This function saves the current basis of a problem. The basis may be reinput using function
¥PRBloadbasis. These two functions serve for storing bases in memory; for writing a basis to a
file, the Optimizer library function XxPRSwritebasis may be used. Note that there is no need to
allocate space for the basis, but after its use, the basis should be deleted using function
¥PRBdelbasis. You may have to switch linear presolve and integer preprocessing off (Optimizer
library controls PRESOLVE and MIPPRESOLVE) in order for the saving and reloading of bases to
work correctly.

Related topics

XPRBdelbasis, XPRBloadbasis, XPRSreadbasis (see Optimizer Reference Manual),
XPRSwritebasis (see Optimizer Reference Manual).

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 142

XPRBsetarrvarel

Purpose
Add an entry to a variable array in a given position.

Synopsis

int XPRBsetarrvarel (XPRBarrvar av, int ndx, XPRBvar var);

Arguments
av BCL reference to an array.

ndx Index within the array.
var Variable to be added to the array.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBarrvar av2;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
av2 = XPRBstartarrvar (prob, 5, "arr2");
XPRBsetarrvarel (av2, 3, x1);

This inserts variable x1 at the fourth position of the array av2 (which is numbered from 0).

Further information

This function puts a variable in specified position within the array. If there is already a variable at
this position it is overwritten.

Related topics
XPRBapparrvarel, XPRBdelarrvar, XPRBendarrvar, XPRBnewarrvar, XPRBstartarrvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 143

XPRBsetcolorder

Purpose

Set a column ordering criterion for matrix generation.
Synopsis

int XPRBsetcolorder (XPRBprob prob, int num);
Arguments

prob Reference to a problem.

num The ordering flag, which must be one of:
0 default ordering;
1 alphabetical order.

Return value
0 if function executed successfully, 1 otherwise.

Example
Set a fixed ordering for a single problem:

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");
XPRBsetcolorder (expl2, 1);

Further information

1. BCL runs reproduce always the same matrix for a problem. This function allows the user to choose
a different ordering criterion than the default one. Note that this function only changes the order
of columns in what is sent to Xpress-Optimizer, you do not see any effect when exporting the
matrix with BCL. However you can control the effect by exporting the matrix from the Optimizer.

2. This function can be used before any problem has been created (with first argument NULL) . In this
case the setting applies to all problems that are created subsequently.

Related topics
XPRBloadmat, XPRBnewprob.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 144

XPRBsetctrtype

Purpose
Set the constraint type.

Synopsis
int XPRBsetctrtype (XPRBctr ctr, int qgrtype);

Arguments . .
ctr Reference to a previously created constraint.

grtype The constraint type, which must be one of:
XPRB_L ’'less than or equal to’ constraint;
XPRB_G 'greater than or equal to’ constraint;
XPRB_E an equality;
XPRB_N a non-binding row (objective function).

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBsetctrtype (ctrl, XPRB_L);

This changes ctrl to a ‘less than or equal to’ constraint.

Further information
This function changes the type of a previously defined constraint to inequality, equation or
non-binding. Function xPrRBset range has to be used for changing the constraint to a ranged
constraint. If a ranged constraint is changed back to some other type with this function, its upper
bound becomes the right hand side value.

Related topics
XPRBgetctrtype, XPRBnewctr, XPRBsetrange, XPRBsetterm.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 145

XPRBsetcutid

Purpose
Set the classification or identification number of a cut.

Synopsis
int XPRBsetcutid (XPRBcut cut, int id);

Arguments .
cut Reference to a previously created cut.

id Classification or identification number.

Return value
0 if function executed successfully, 1 otherwise.

Example
Set the classification or identification number of the cut cut1 to 10.

XPRBcut cutl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBsetcutid (cutl, 10);

Further information

This function changes the classification or identification number of a previously defined cut. This
change does not have any effect on the cut definition in Xpress-Optimizer if the cut has already
been added to the matrix with the function xPrEaddcuts.

Related topics
XPRBnewcut, XPRBgetcutid, XPRBsetcuttype.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 146

XPRBsetcutmode

Purpose
Set the cut mode.

Synopsis
int XPRBsetcutmode (XPRBprob prob, int mode);

Arguments
prob Reference to a problem.

mode Cut mode indicator:
0 switch cut mode off
1 switch cut mode on

Return value
0 if function executed successfully, 1 otherwise.

Example
The example shows how to enable the cut mode.

XPRBprob expll;
expll = XPRBnewprob ("cutexample");
XPRBsetcutmode (expll, 1);

Further information
This function switches the cut mode on or off. It changes the settings of certain Optimizer
controls. Switching the cut mode off resets these controls to their default values.

Related topics
XPRBaddcuts.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 147

XPRBsetcutterm

Purpose
Set a cut term.

Synopsis

int XPRBsetcutterm (XPRBcut cut, XPRBvar var, double coeff);
Arguments .

cut Reference to a previously created cut.

var Reference to a variable, may be NULL.

coeff Value of the coefficient of the variable var.

Return value
0 if function executed successfully, 1 otherwise.

Example
Set the RHS of the cut cut1 to 7.0.

XPRBcut cutl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBsetcutterm(cutl, NULL, 7.0);

Further information

This function sets the coefficient of a variable to the value coeff. If var is set to NULL, the right
hand side of the cut is set to coeff.

Related topics
XPRBnewcut, XPRBaddcutterm, XPRBdelcutterm.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 148

XPRBsetcuttype

Purpose

Set the type of a cut.

Synopsis

int XPRBsetcuttype (XPRBcut cut, int type);

Arguments
cut

type

Return value

Reference to a previously created cut.

Type of the cut:

XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)

0 if function executed successfully, 1 otherwise.

Example

Set the type of cut1to’ <.

XPRBcut cutl;

XPRBprob expll;

expll = XPRBnewprob ("cutexample");
cutl = XPRBnewcut (expll, XPRB_E, 1);
XPRBsetcuttype (cutl, XPRB_L);

Further information
This function changes the type of the given cut. This change does not have any effect on the cut
definition in Xpress-Optimizer if the cut has already been added to the matrix with the function
XPRBaddcuts.

Related topics

XPRBnewcut, XPRBgetcuttype, XPRBgetcutid

BCL C library functions

(©20009 Fair Isaac Corporation. All rights reserved.

page 149

XPRBsetdecsign

Purpose
Select the decimal sign for data input.

Synopsis
int XPRBsetdecsign (char sign);

Argument) . . .
sign The decimal sign to be used. This is typically '.’ (default), or ’, ".

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBsetdecsign(’,’);

This switches to using a comma as the decimal point.

Further information
By default, BCL uses the Anglo-American decimal point when reading and writing real numbers.
With this function the decimal sign accepted by the data input functions xPrRBEreadlinech and
XPRBreadarrlinecbh can be changed to a comma or any other non-numerical ASCII character.
Note that all output still contains the decimal point.

Related topics
XPRBreadarrlinechb, XPRBreadlinechb.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 150

XPRBsetdelayed

Purpose
Set the constraint type.
Synopsis
int XPRBsetdelayed (XPRBctr ctr, int dstat);
Arguments . .
ctr Reference to a previously created constraint.

dstat The constraint type, which must be one of:
0 ordinary constraint;
1 delayed constraint.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following turns the constraint ctr1 into a delayed costraint.

XPRBprob prob;
XPRBctr ctril;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBsetdelayed(ctrl, 1);
Further information

1. This function changes the type of a previously defined constraint from ordinary constraint to de-
layed constraint and vice versa.

2. Delayed or 'lazy’ constraints must be satisfied for any integer solution, but will not be loaded into
the active set of constraints until required.

3. Constraint properties ‘'model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mutually ex-
clusive. When changing from one of these types to another you must first reset the correponding
type to 0.

Related topics
XPRBgetdelayed, XPRBnewctr, XPRBsetindicator, XPRBsetmodcut.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 151

XPRBsetdictionarysize

Purpose
Set the size of a dictionary.

Synopsis
int XPRBsetdictionarysize (XPRBprob prob, int dict, int size)

Arguments
prob Reference to a problem.

dict Choice of the dictionary. Possible values:
XPRB_DICT_NAMES names dictionary
XPRB_DICT_IDX indices dictionary

size Non-negative value, preferrably a prime number; 0 disables the dictionary (for names
dictionary only).

Return value
0 if function executed successfully, 1 otherwise.

Example
Switch off the names dictionary:

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");
XPRBsetdictsize (expl2, XPRB_DICT_NAMES, O0);

Further information

1. This function sets the size of the hash table of the names or indices dictionaries of the given
problem. It can only be called immediately after the creation of the corresponding problem.

2. The names dictionary serves for storing and accessing the names of all modeling objects (variables,
arrays of variables, constraints, SOS, index sets). Once it has been disabled it cannot be enabled
any more. All methods relative to the names cannot be used if this dictionary has been disabled
and BCL will not generate any unique names at the creation of model objects. If this dictionary
is enabled (default setting) BCL automatically resizes this dictionary to a suitable size for your
problem. If nevertheless you wish to set the size by yourself we recommend to choose a value
close to the number of variables+constraints in your problem.

3. The indices dictionary serves for storing all index set elements. The indices dictionary cannot be
disabled, it is created automatically once an index set element is defined.

Related topics
XPRBnewprob, XPRBgetbyname.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 152

XPRBseterrctrl

Purpose
Select behavior in case of an error.

Synopsis
int XPRBseterrctrl (int flag)

Argument . .
flag Indicator value for error handling. May be one of:

0 no error handling by BCL;
1 program exit at error (default).

Return value
0 if function executed successfully, 1 otherwise.

Example
The following switches to error handling by the user’s own program.

XPRBseterrctrl (0);

Further information

1. This function controls whether BCL performs error handling. By default, the execution is stopped
whenever an error occurs. If the error handling by BCL is disabled, the user needs to perform
the checking for errors in his program by testing the return values of all functions or using the
callback function xPrBdefcberr. It may be preferable to disable the error handling by BCL if
a BCL program is embedded into some larger application or executed under Windows. Callback
function xPrBdefcberr can be defined to retrieve the error messages and implement user error
handling.

2. This function can be used before BCL has been initialized.

Related topics
XPRBdefcberr, XPRBgetversion.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 153

XPRBsetindicator

Purpose
Set the indicator constraint type.
Synopsis
int XPRBsetindicator (XPRBctr ctr, int dir, XPRBvar b);
Arguments
ctr Reference to a previously created inequality or range constraint.
dstat The indicator type, which must be one of:
-1 indicator constraint with condition b = 0;
0 ordinary constraint;
1 indicator constraint with condition b = 1.
b Reference to a previously created binary variable.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following turns the constraint ctr1 into the indicator constraint b = 1 = ctr1.

XPRBprob prob;
XPRBctr ctrl;
XPRBvar b;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);
b = XPRBnewvar (prob, XPRB_BV, "b", 0, 1);
XPRBsetindicator (ctrl, 1, b);

Further information

1. This function changes the type of a previously defined constraint from ordinary constraint to indi-
cator constraint and vice versa.

2. Indicator constraints are defined by associating a binary variable and an implication sense with a
linear inequality or range constraint.

3. Constraint properties ‘'model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mutually ex-
clusive. When changing from one of these types to another you must first reset the correponding
type to 0.

Related topics
XPRBgetindicator, XPRBgetindvar, XPRBnewctr, XPRBsetdelayed, XPRBsetmodcut.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 154

XPRBsetlb

Purpose
Set a lower bound.

Synopsis
int XPRBsetlb (XPRBvar var, double bdl);

Arguments .
var BCL reference to a variable.

bdl The variable’s new lower bound.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code changes the lower bound of x1 to 3.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
XPRBsetlb(x1, 3.0);

Further information
This function sets the lower bound on a variable.

Related topics
XPRBfixvar, XPRBgetbounds, XPRBget1lim, XPRBsetlim, XPRBsetub.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 155

XPRBsetlim

Purpose

Set the integer limit for a partial integer, or the lower semi-continuous limit for a

semi-continuous or semi-continuous integer variable.

Synopsis

int XPRBsetlim (XPRBvar var, double c);
Arguments .

var BCL reference to a variable.

c Value of the integer limit.

Return value
0 if function executed successfully, 1 otherwise.

Example
XPRBprob prob;
XPRBvar x3;

x3 = XPRBnewvar (prob, XPRB_SC, "abc4", 0, 50);
XPRBsetlim(x3, 5);

This sets the limit for variable x3 to 5. The possible values for x3 are thus reduced from x3 = 0
orl <= x3 <= 50 at the creation of this variable to x3 = 0or5 <= x3 <= 50.

Further information
This function sets the integer limit (i.e. the lower bound of the continuous part) of a partial
integer variable or the semi-continuous limit of a semi-continuous or semi-continuous integer
variable to the given value.

Related topics
XPRBfixvar, XPRBgetbounds, XPRBgetlim, XPRBsetlb, XPRBsetub.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 156

XPRBsetmodcut

Purpose
Set the constraint type.

Synopsis
int XPRBsetmodcut (XPRBctr ctr, int mcstat);

Arguments . .
ctr Reference to a previously created constraint.

mcstat The constraint type, which must be one of:
0 constraint;
1 model cut.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following turns the constraint ctr1 into a model cut.

XPRBprob prob;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBsetmodcut (ctrl, 1);

Further information

1. This function changes the type of a previously defined constraint from ordinary constraint to
model cut and vice versa.

2. Model cuts must be ‘true’ cuts, in the sense that they are redundant at the optimal MIP solution.
The Optimizer does not guarantee to add all violated model cuts, so they must not be required to
define the optimal MIP solution.

3. Constraint properties ‘'model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mutually ex-
clusive. When changing from one of these types to another you must first reset the correponding
type to 0.

Related topics
XPRBgetmodcut, XPRBnewctr, XPRBsetdelayed, XPRBsetindicator.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 157

XPRBsetmsglevel

Purpose
Set the message print level.

Synopsis
int XPRBsetmsglevel (XPRBprob prob, int level);

Arguments
prob Reference to a problem.

level The message level, i.e. the type of messages printed by BCL. This may be one of:
0 no messages printed;

error messages only printed;

warnings and errors printed;

warnings, errors, and Optimizer log printed (default);

all messages printed.

Sw N

Return value
0 if function executed successfully, 1 otherwise.

Example
The following statement switches to printing error messages only.

XPRBprob prob;

XPRBsetmsglevel (prob, 1);

Further information

1. BCL can produce different types of messages; status information, warnings and errors. This func-
tion controls which of these are output. For settings 1 or higher, the corresponding Optimizer
output is also displayed. In addition to this setting, the amount of Optimizer output can be mod-
ified through several Optimizer printing control parameters (see the ‘Xpress-Optimizer Reference
Manual’).

2. This function may be used before any problem has been created and even before BCL has been
initialized (with first argument NULL). In this case the setting applies to all problems that are
created subsequently.

Related topics
XPRBdefcbmsg

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 158

XPRBsetobj

Purpose
Select the objective function.

Synopsis
int XPRBsetobj (XPRBprob prob, XPRBctr ctr);

Arguments
prob Reference to a problem.

ctr Reference to a previously defined constraint.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBctr ctr3;
XPRBarrvar tobij;

tobj XPRBnewarrvar (prob, 10, XPRB_PL, "tabo", 0, 800);
ctr3 = XPRBnewsum(prob, "r3", tobj, XPRB_N, 0);
XPRBsetobj (prob, ctr3);

This defines a non-binding constraint, ct r3, and then sets it as the objective function.

Further information
This functions sets the objective function by selecting a constraint the variable terms of which
become the objective function. This must be done before any optimization task is carried out.
Typically, the objective constraint will have the type XxPRB_N (non-binding), but any other type of
constraint may be chosen too. In the latter case, the equation or inequality expressed by the
constraint also remains part of the problem.

Related topics
XPRBgetsense, XPRBsetsense

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 159

XPRBsetqgterm

Purpose
Set a quadratic constraint term.
Synopsis
int XPRBsetqgterm (XPRBctr ctr, XPRBvar varl, XPRBvar var2,
double coeff);
Arguments

ctr Reference to a previously defined constraint.

varl Reference to a variable.

var2 Reference to a variable (not necessarily different).

coeff Value to be added to the coefficient of the term varl » var2.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBvar x2;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_L);

x2 = XPRBnewvar (prob, XPRB_PL, "abcl", 0, XPRB_INFINITY),;
XPRBaddgterm(ctrl, x2, x2, 1);

XPRBsetgterm(ctrl, x2, x2, 5.2);

This sets the coefficient of the term x2+x2 to 5. 2.

Further information

This function sets the coefficient of a quadratic term in a constraint to the value coeff.

Related topics
XPRBaddgterm, XPRBdelgterm.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 160

XPRBsetrange

Purpose
Define a range constraint.

Synopsis

int XPRBsetrange (XPRBctr ctr, double bdl, double bdu);
Arguments .

ctr Reference to the constraint.

bdl Lower bound on the range constraint.

bdu Upper bound on the range constraint.

Return value
0 if function executed successfully, 1 otherwise.

Example

The following transforms the equality constraint ct r2 into the ranged constraint 4.0 <=
sum (i=0:4) tyl[i] <= 15.5.

XPRBprob prob;
XPRBctr ctr2;
XPRBarrvar tyl;

tyl = XPRBnewarrvar (prob, 5, XPRB_PL, "arryl", 0, 500);
ctr2 = XPRBnewsum(prob, "r2", tyl, XPRB_E, 9);
XPRBsetrange (ctr2, 4.0, 15.5);

Further information
This function changes the type of a previously defined constraint to a range constraint within the
bounds specified by bd1l and bdu. The constraint type and right hand side value of the constraint
are replaced by the type XPRB_R (range) and the two bounds.

Related topics
XPRBgetctrtype, XPRBgetrange, XPRBsetctrtype

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 161

XPRBsetrealfmt

Purpose
Set the format for printing real numbers.

Synopsis
int XPRBsetrealfmt (XPRBprob prob, const char *fmt);

Arguments

prob Reference to a problem.
fmt Format string (as used by the C function print £). Simple format strings are of the form
$n where n may be, for instance, one of
g default printing format (precision: 6 digits; exponential notation if the exponent

resulting from the conversion is less than -4 or greater than or equal to the precision)
.numf print real numbers in the style [-]d.d where the number of digits after the decimal
point is equal to the given precision num.

Return value
0 if function executed successfully, 1 otherwise.

Example
This example sets the number printing format to 10 digits after the decimal point:

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");
XPRBsetrealfmt (expl2, "%.10£f");

Further information

1. In problems with very large or very small numbers it may become necessary to change the printing
format to obtain a more exact output. In particular, by changing the precision it is possible to
reduce the difference between matrices loaded in memory into Xpress-Optimizer and the output
produced by exporting them to a file.

2. This function can be used before any problem has been created (with first argument NULL) . In this
case the setting applies to all problems that are created subsequently.

Related topics
XPRBexportprob, XPRBloadmat, XPRBprintprob.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 162

XPRBsetsense

Purpose
Set the sense of the objective function.

Synopsis
int XPRBsetsense (XPRBprob prob, int dir);

Arguments
prob Reference to a problem.

dir Sense of the objective function, which must be one of:
XPRB_MAXIM maximize the objective;
XPRB_MINIM minimize the objective.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob expl2;

expl2 = XPRBnewprob ("example2");
XPRBsetsense (expl2, XPRB_MAXIM) ;

This sets expl2 as a maximization problem.

Further information

This functions sets the objective sense to maximization or minimization. It is set to minimization

by default.

Related topics
XPRBgetsense, XPRBsetobj.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 163

XPRBsetsosdir

Purpose

Set a branching directive for a SOS.

Synopsis

int XPRBsetsosdir (XPRBsos sos, int type, double val);

Arguments
SOS

type

val

Return value

Reference to a previously created SOS.

The directive type, which must be one of:

XPRB_PR priority;

XPRB_UP first branch upwards;

XPRB_DN first branch downwards;

XPRB_PU pseudo cost on branching upwards;

XPRB_PD pseudo cost on branching downwards.

An argument dependent on the type of the directive being defined. If type is:

XPRB_PR val will be the priority value, an integer between 1 (highest) and 1000 (low-
est), the default;

XPRB_UP no input is required — choose any value, e.g. 0;

XPRB_DN no input is required — choose any value, e.g. 0;

XPRB_PU val will be the value of the pseudo cost for the upward branch;

XPRB_PD val will be the value of the pseudo cost for the downward branch.

0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBsos setl;

setl = XPRBnewsos (prob, "sosl", XPRB_S1);
XPRBsetsosdir (setl, 5);
XPRBsetsosdir (setl, XPRB_DN, 0);

This gives a priority of 5 to the SOS set1 and sets branching downwards as the preferred
direction for set1.

Further information
This function sets any type of branching directive available in Xpress. This may be a priority for
branching on a SOS (type xPRB_PR), the preferred branching direction (types XPRB_UP, XPRB_DN)
or the estimated cost incurred when branching on a SOS (types XxPRB_PU, XPRB_PD). Several
directives of different types may be set for a single set. Function xPrRBEsetvardir may be used to
set a directive for a variable.

Related topics

XPRBcleardir, XPRBsetvardir.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 164

XPRBsetterm

Purpose
Set a linear constraint term.

Synopsis

int XPRBsetterm (XPRBctr ctr, XPRBvar var, double coeff);

Arguments . .
ctr BCL reference to a previously created constraint.

var BCL reference to a variable. May be NULL if not required.
coeff Value of the coefficient of the variable var.

Return value
0 if function executed successfully, 1 otherwise.

Example

XPRBprob prob;
XPRBctr ctrl;

ctrl = XPRBnewctr (prob, "rl", XPRB_E);
XPRBsetterm(ctrl, NULL, 7.0);

This sets the right hand side of the constraint ctrl to 7.0.

Further information

This function sets the coefficient of a variable to the value coeff. If var is set to NULL, the right

hand side of the constraint is set to coeff.

Related topics
XPRBaddterm, XPRBdelctr, XPRBnewctr.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 165

XPRBsetub

Purpose
Set an upper bound.

Synopsis
int XPRBsetub (XPRBvar var, double bdu);

Arguments .
var BCL reference to a variable.

bdu The variable’s new upper bound.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code changes the upper bound of x1 to 200.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 1, 100);
XPRBsetub (x1, 200.0);

Further information
This function sets the upper bound on a variable.

Related topics

XPRBfixvar, XPRBgetbounds, XPRBgetlim, XPRBsetlb, XPRBsetlim.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 166

XPRBsetvardir

Purpose

Set a branching directive for a variable.
Synopsis

int XPRBsetvardir (XPRBvar var, int type, double c);
Arguments

var BCL reference to a variable.

type Directive type, which must be one of:
XPRB_PR priority;
XPRB_UP first branch upwards;
XPRB_DN first branch downwards;
XPRB_PU pseudo cost on branching upwards;
XPRB_PD pseudo cost on branching downwards.

c An argument dependent on the type of directive to be defined. Must be one of:
XPRB_PR priority value — an integer between 1 (highest) and 1000 (least priority), the
default;

XPRB_UP no input required — set to any value, e.g. 0;
XPRB_DN no input required — set to any value, e.g. 0;
XPRB_PU value of the pseudo cost on branching upwards;
XPRB_PD value of the pseudo cost on branching downwards.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following example gives a priority of 10 to variable x1 and sets the preferred branching
direction to be upwards.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
XPRBsetvardir (x1l, XPRB_PR, 10);
XPRBsetvardir (x1, XPRB_UP, 0);

Further information

1. This function sets any type of branching directive available in Xpress. This may be a priority
for branching on a variable (type xPRB_PR), the preferred branching direction (types XPRB_UP,
XPRB_DN) or the estimated cost incurred when branching on a variable (types XPRB_PU, XPRB_PD).
Several directives of different types may be set for a single variable.

2. Note that it is only possibly to set branching directives for discrete variables (including semi-
continuous and partial integer variables). Function xPRBset sosdir may be used to set a directive
for a SOS.

Related topics
XPRBcleardir, XPRBsetsosdir.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 167

XPRBsetvarlink

Purpose
Set the interface pointer of a variable.

Synopsis

int XPRBsetvarlink (XPRBvar var, void =1link);

Arguments .
var Reference to a BCL variable

link Pointer to an interface object

Return value
0 if function executed successfully, 1 otherwise.

Example
Set the interface pointer of variable x1 to v1ink:

XPRBprob prob;
XPRBvar x1;
myinterfacetype *vlink;

x1 = XPRBnewvar (prob, XB_UI, "abc3",
XPRBsetvarlink (x1, wvlink);

Further information

This function sets the interface pointer of a variable to the indicated object. It may be used to

establish a connection between a variable in BCL and some other external program.

Related topics
XPRBgetvarlink, XPRBdefcbdelvar.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 168

XPRBsetvartype

Purpose
Set the variable type.

Synopsis
int XPRBsetvartype (XPRBvar var, int type);

Arguments .
var BCL reference to a variable.

type The variable type, which is one of:
XPRB_PIL continuous;
XPRB_BV binary;
XPRB_UI general integer;
XPRB_PI partial integer;
XPRB_SC semi-continuous;
XPRB_SI semi-continuous integer.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code changes the type of variable x1 from integer to binary, and consequently
reducing the upper bound to 1.

XPRBprob prob;
XPRBvar x1;

x1 = XPRBnewvar (prob, XPRB_UI, "abc3", 0, 100);
XPRBsetvartype (x1, XPRB_BV);

Further information
This function changes the type of a variable that has been created previously.

Related topics
XPRBgetvarname, XPRBgetvartype, XPRBnewvar

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 169

XPRBsolve

Purpose
Call the Xpress-Optimizer solution algorithm.

Synopsis
int XPRBsolve (XPRBprob prob, char =*alg);

Arguments
prob Reference to a problem.

alg Choice of the solution algorithm, which should be one of:

" " solve the problem using the recommended LP/QP algorithm (MIP problems remain
in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1" relax all global entities (integer variables etc) in a MIP/MIQP problem and solve it as
a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem is solved
without this flag, only the initial LP/QP problem will be solved.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following code uses the primal simplex algorithm to solve exp12 as a MIP, assuming that it
contains global entities.

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "pg");

Further information
This function selects and starts the Xpress-Optimizer solution algorithm. The characters indicating
the algorithm choice may be combined where it makes sense, e.g. "dg. If the matrix loaded in the
Optimizer does not correspond to the current state of the specified problem definition it is
regenerated automatically prior to the start of the algorithm. Matrix reloading can also be forced
by calling xPrBsync before the optimization. The sense of the optimization (default:
minimization) can be changed with function xPrREset sense. Before solving a problem, the
objective function must be selected with xPrRBsetobj. Note that if you use an incomplete global
search you should finish your program with a call to the Optimizer library function
XPRSinitglobal in order to remove all search tree information that has been stored. Otherwise
you may not be able to re-run your program.

Related topics
XPRBgetsense, XPRBmaxim, XPRBminim, XPRBsetsense, XPRBsync.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 170

XPRBstartarrvar

Purpose
Start the definition of a variable array.

Synopsis

XPRBarrvar XPRBstartarrvar (XPRBprob prob, int nbvar, const char xname);

Arguments
prob Reference to a problem.

nbvar The maximum number of variables in the array.
name Name of the array. May be NULL if not required.

Return value

Reference to the new array if function executed successfully, NULL otherwise.

Example

XPRBprob prob;
XPRBarrvar av2;

av2 = XPRBstartarrvar (prob, 5, "arr2");

This starts the definition of an array with five elements, named arr2.

Further information

This function starts the definition of a variable array. It returns a reference to an array of

variables that may be used, for instance, in the definition of constraints. Variables belonging to
an array created by this function may stem from any LP-variables previously defined. They may be
of different types, and can be positioned in any order. A variable may belong to several arrays,
but it is created only once (functions xPREnewvar or xPREBnewarrvar). If the indicated name is
already in use, BCL adds an index to it. If no array name is given, BCL generates a default name

starting with av.

Related topics

XPRBdelarrvar, XPRBendarrvar, XPRBnewarrvar

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved.

page 171

XPRBsync

Purpose
Synchronize BCL with the Optimizer.

Synopsis
int XPRBsync (XPRBprob prob, int synctype);

Arguments
prob Reference to a problem.

synctype Type of the synchronization. Possible values:
XPRB_XPRS_SOL update the BCL solution information with the solution currently
held in the Optimizer;
XPRB_XPRS_PROB force problem reloading.

Return value
0 if function executed successfully, 1 otherwise.

Example
The following forces BCL to reload the matrix into the Optimizer even if there has been no
change other than bound changes to the problem definition in BCL since the preceding
optimization:

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBsolve (expl2, "1");

XPRBsync (expl2, XPRB_XPRS_PROB) ;
XPRBsolve (expl2, "g");

Further information

1. This function resets the BCL problem status.

2. XPRB_XPRS_SOL: at the next solution access the solution information in BCL is updated with the
solution held in the Optimizer (after MIP search: best integer solution, otherwise solution of the
last LP solved).

3. XPRB_XPRS_PROB: at the next call to optimization or xPrREloadmat the problem is completely
reloaded into the Optimizer; bound changes are not passed on to the problem loaded in the
Optimizer any longer.

Related topics
XPRBgetsol, XPRBgetrcost, XPRBgetdual, XPRBgetslack, XPRBloadmat, XPRBminim,
XPRBmaxim, XPRBsolve.

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 172

XPRBwritedir

Purpose
Write directives to a file.

Synopsis

int XPRBwritedir (XPRBprob prob, const char =xfname);
Arguments

prob Reference to a problem.

fname Name of the directives files. May be NULL if the problem name is to be used.

Return value
0 if function executed successfully, 1 otherwise.

Example
This example writes all directives defined for the problem expl2 to the file example2.dir:

XPRBprob expl2;
expl2 = XPRBnewprob ("example2");

XPRBwritedir (expl2, NULL);

Further information
This function writes out to a file the directives defined for a problem. The extension .dir is
appended to the given file name. When no file name is given, the name of the problem is used. If
a file of the given name exists already it is replaced.

Related topics
XPRBexportprob, XPRBsetvardir, XPRBsetsosdir

BCL C library functions (©20009 Fair Isaac Corporation. All rights reserved. page 173

Chapter 5
BCL in C++

5.1 An overview of BCL in C++

The C++ interface of BCL provides the full functionality of the C version except for the data input,
output and error handling for which the corresponding C functions may be used. The C modeling
objects, such as variables, constraints and problems, are converted into classes, and their
associated functions into methods of the corresponding class in C++.

To use the C++ version of BCL, the C++ header file must be included at the beginning of the
program (and not the main BCL header file xprb.h).

#include "xprb_cpp.h"

Using C++, the termwise definition of constraints is even easier. This has been achieved by
overloading the algebraic operators like '+', -, '<=’, or '==". With these operators constraints
may be written in a form that is close to an algebraic formulation.

It should be noted that the names of classes and methods have been adapted to C++ naming
standards: All C++ classes that have a direct correspondence with modeling objects in BCL
(namely XPRBprob, XPRBvar, XPRBctr, XPRBcut, XPRBsos, XPRBindexSet, XPRBbaSLS) take
the same names, with the exception of xPrREindexSet. In the names of the methods the prefix
XPRB has been dropped, as have been references to the type of the object. For example, function
XPRBgetvarname is turned into the method getName of class xPRBvar.

All C++ classes of BCL are part of the namespace dashoptimization. To use the (short) class
names, it is recommended to add the line

using namespace ::dashoptimization;

at the beginning of every program that uses the C++ classes of BCL.

C++ functions can be used together with C functions, for instance when printing program output
or using Xpress-Optimizer functions. However, it is not possible to mix BCL C and C++ objects in a
program.

5.1.1 Example

An example of use of BCL in C++ is the following, which constructs the scheduling example
described in Chapter 2:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;

(©20009 Fair Isaac Corporation. All rights reserved. page 174

using namespace ::dashoptimization;

#define NJ 4 // Number of jobs

#define NT 10 // Time limit

double DUR[] = {3,4,2,2}; // Durations of jobs

XPRBvar start[NJ]; // Start times of jobs

XPRBvar delta[NJ] [NT]; // Binaries for start times
XPRBvar z; // Max. completion time

XPRBprob p("Jobs"); // Initialize BCL & a new problem

void jobsModel ()
{
XPRBexpr le;
int J,t;
// Create start time variables
for (j=0; j<NJ; j++) start[j] = p.newVar ("start");
z = p.newVar ("z",XPRB_PL,0,NT); // Makespan variable

for (j=0; J<NJ; j++) // Binaries for each job
for (t=0;t< (NT-DUR[F]+1) ;t++)
deltal[j]l[t] =
p.newVar (XPRBnewname ("delta%d%d", j+1,t+1),XPRB_BV) ;

for (§=0; j<NJ; j++) // Calculate max. completion time
p.newCtr ("Makespan", start[j]+DUR[J] <= z);

// Precedence relation betw. Jjobs
p.newCtr ("Prec", start[0]+DUR[0] <= start([2]);

for (3=0; J<NJ; j++) // Linking start times & binaries
{

le=0;

for (t=0;t<(NT-DUR[]J]+1);t++) le += (t+1l)xdeltal]jllt];
p.newCtr (XPRBnewname ("Link_%d", j+1), le == start[j]);

}

for (j=0; J<NJ; j++) // Unique start time for each job
{

le=0;

for (t=0; t<(NT-DUR[J]+1);t++) le += deltaljl[t];

p.newCtr (XPRBnewname ("One_%d", j+1), le == 1);

}
p.setObj(z); // Define and set objective

for (j=0; J<NJ; j++) start[j].setUB(NT-DUR[J]+1);
// Upper bounds on "start" var.s

void jobsSolve ()
{
int j,t,statmip;

for (3=0; j<NJ; j++)
for (t=0; t<NT-DUR[J]+1; t++)
delta[j][t].setDir (XPRB_PR, 10 (t+1));
// Give highest priority to var.s for earlier start times

p.setSense (XPRB_MINIM) ;

p.solve("g"); // Solve the problem as MIP
statmip = p.getMIPStat(); // Get the MIP problem status
if ((statmip XPRB_MIP_SOLUTION) ||
(statmip == XPRB_MIP_OPTIMAL))

{ // An integer solution has been found
cout << "Objective: " << p.getObjVal() << endl;

for (j=0; J<NJ; j++)

{ // Print the solution for all start times

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 175

cout << start[j].getName () << ": " << start[]j].getSol();
cout << endl;
}

}

}

int main(int argc, char xxargv)

{
jobsModel () ; // Problem definition
jobsSolve () ; // Solve and print solution
return O;

The definition of SOS is similar to the definition of constraints.

XPRBsos set [NJ];

void jobsModel ()
{

for (3=0; J<NJ; j++) // Variables for each job
for (t=0; t< (NT-DUR[J]+1) ;t++)
deltal[jl[t] =
p.newVar (XPRBnewname ("delta%d%d", j+1,t+1),XPRB_PL,0,1);

for (3=0; J<NJ; j++) // SOS definition

{

le=0;

for (t=0; t<(NT-DUR[]J]+1);t++) le += (t+1)~*deltal]jl[t];
set[J] = p.newSos("sosj",XPRB_S1,1le);

}
}

Branching directives for the SOSs are added as follows.

for (j=0; j<NJ; j++) set[]j].setDir (XPRB_DN) ;
// First branch downwards on sets

Adding the following two lines during or after the problem definition will print the problem to
the standard output and export the matrix to a file respectively.

p.print () ; // Print out the problem def.
p.exportProb (XPRB_MPS, "expll");
// Output matrix to MPS file

Similarly to what has been shown for the problem formulation in C, we may read data from file
and use index sets in the problem formulation. The following changes and additions to the basic
model formulation are required for the creation of index sets based on data input from file. The
function jobsSolve is left out in this listing since it remains unchanged from the previous one.

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include "xprb_cpp.h"

using namespace std;

using namespace ::dashoptimization;

#define MAXNJ 4 // Max. number of jobs
#define NT 10 // Time limit

int NJ = 0; // Number of jobs read in
double DUR[MAXNJ]; // Durations of jobs

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 176

XPRBindexSet Jobs; // Names of Jobs

XPRBvar sstart; // Start times of jobs

XPRBvar =*=xdelta; // Binaries for start times
XPRBvar z; // Max. completion time

XPRBprob p("Jobs"); // Initialize BCL & a new problem

void readData ()
{
char name[100];
FILE *datafile;
// Create a new index set
Jobs = p.newlIndexSet ("jobs", MAXNJ) ;
// Open data file for read access
datafile=fopen ("durations.dat","r");
// Read in all (non-empty) lines up to the end of the file
while (NJ<MAXNJ &&
XPRBreadlinecb (XPRB_FGETS, datafile, 99, "T,d", name, &DUR[NJ]))
{

Jobs += name; // Add job to the index set
NJ++;
}
fclose (datafile); // Close the input file
cout << "Number of jobs read: " << Jobs.getSize() << endl;

}

void jobsModel ()
{
XPRBexpr le;
int j, t;
// Create start time variables with bounds
start = new XPRBvar([NJ];
if (start==NULL)

{ cout << "Not enough memory for ’start’ variables." << endl;
exit (0); }

for (3=0; j<NJ; j++)

start[j] = p.newVar ("start",XPRB_PL,0,NT-DUR[]]+1));

z = p.newVar ("z",XPRB_PL,0,NT); // Makespan variable

delta = new XPRBvarx[NJ];
if (delta==NULL)

{ cout << "Not enough memory for ’"delta’ variables." << endl;
exit (0); }
for (J=0; J<NJ; j++) // Binaries for each job
{
delta[j] = new XPRBvar[NT];
if (delta[j]==NULL)
{ cout <<"Not enough memory for ’"delta_7j’ wvariables." << endl;

exit (0); }
for (t=0; t<(NT-DUR[J]+1);t++)
deltal[jl[t] =
p.newVar (XPRBnewname ("delta%$s_%d",Jobs[j],t+1l), XPRB_BV);

for (§=0; J<NJ; j++) // Calculate max. completion time
p.newCtr ("Makespan", start[j]+DUR[]J] <= z);
// Precedence relation betw. jobs
p.newCtr ("Prec", start[0]+DUR[0] <= start[2]);

for (3=0; j<NJ; j++) // Linking start times & binaries
{

le=0;
for (t=0; t<(NT-DUR[J]+1);t++) le += (t+1l)*deltalj](t];
p.newCtr (XPRBnewname ("Link_%d", j+1), le == start[j]);

}
for (§=0; J<NJ; j++) // Unique start time for each job
{

le=0;

for (t=0; t<(NT-DUR[J]+1);t++) le += deltaljl[t];

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 177

p.newCtr (XPRBnewname ("One_%d", j+1), le == 1);
}

p.setObj(z); // Define and set objective
jobsSolve () ; // Solve the problem

delete [] start;

for (3=0; j<NJ; j++) delete [] deltalj];

delete [] delta;

int main(int argc, char xxargv)
{
readData () ; // Read in the data
jobsModel () ; // Problem definition
return 0;

}

5.1.2 QCQP Example

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define N 42
double CX[N], CY[N], R[N];

// Initialize the data arrays

int main(int argc, char xxargv)

{

int 1, 3j;

XPRBvar x[N],y[N];

XPRBexpr ge;

XPRBctr cobj, c;

XPRBprob prob ("airport"); // Initialize a new problem in BCL

/*%x+x VARIABLES *x%x*/
for (i=0; i<N; i++)

x[1] = prob.newVar (XPRBnewname ("x (%d)",i+1), XPRB_PL, -10, 10);
for (1i=0; i<N; i++)

y[i] = prob.newVar (XPRBnewname ("y (%d)",i+1), XPRB_PL, -10, 10);
/ *%%*OBJECTIVE* %/
// Minimize the total distance between all points

qe=0;

for (i=0; i<N-1; i++)
for (jJ=1i+1; j<N; j++) ge+= sqr(x[1]-x[7F])+sqgr(y[i]l-vI[]j]);
cobj = prob.newCtr ("TotDist", ge);
prob.setObj (cobj); // Set objective function

/*x%x CONSTRAINTS *x*x/
// All points within given distance of their target location
for (1=0;i<N; i++)
c = prob.newCtr ("LimDist", sqr(x[i]-CX[i])+sqr(y[i]-CY[i]) <= R[1i]);

/*%x*xSOLVING + OUTPUT**xx*/

prob.setSense (XPRB_MINIM) ; // Choose sense of optimization
prob.solve (""); // Solve the problem
cout << "Solution: " << prob.getObjval() << endl;

for (i=0; i<N; i++)
{
cout << x[i].getName() << ": " << x[i].getSol() << ", ";

The following is an implementation with BCL C++ of the QCQP example described in Section 3.4.1:

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 178

cout << y[i].getName() << ": " << y[i].getSol() << endl;

}

return 0;

}

5.1.3 Error handling

The default behavior of BCL in the case of an error is to output a message and terminate the
program. However, in C++ applications it may be more convenient to raise exceptions instead of
simply exiting from the program. With the BCL C++ interface the user has the possibility to
disable the standard ‘exit on error’ behavior replacing it, for instance, by C++ exceptions.

The C++ program below implements the example of user error handling from Section 3.5. The
default error handling of BCL is disabled (function xPrRBseterrctr1) and the error handling
callback is defined to raise C++ exceptions in the case of an error—the BCL C++ interface uses the
callback functions of the BCL C library. When using the BCL C functions with BCL C++ objects we
need to employ their C representation (obtained with method getCRref).

Besides the user error handling this example also shows how to work with the user message
printing callback to redirect the BCL output to a user-defined callback function (this includes
output from BCL and anything printed through xPrBprint £). By setting the BCL message
printing level (method setMsgLevel) you can control the amount of information output by BCL.

#include <iostream>
#include <string>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

class bcl_exception
{
public:
string msg;
int code;
bcl_exception (int c¢,const char =m)

{

code=c;
msg=string(m);
cout << "EXCP:" << msg << "\n";

}
bi

/*%*x% User error handling function s*xx/

void XPRB_CC usererror (xbprob* prob, void *vp, int num, int type,
const char =*t)

{

throw bcl_exception(num, t);

}

/**xx User printing function **xx/
void XPRB_CC userprint (xbprob* prob, void *vp, const char *msg)
{

static int rtsbefore=1;

/* Print ’'BCL output’ whenever a new output line starts,
otherwise continue to print the current line. x/
if (rtsbefore)

cout << "BCL output: " << msg;

else

cout << msgj;
rtsbefore=(msglstrlen(msg)-1]1=='\n’);

}

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 179

Jxkkkkk ok ok kk ok ok ok Ak kA kA kA ok Ak kkkkhkh ok hh kA ok k ok k ok kk ok hkhkkkkkkkkkkkkkkkkkkkk Kk kx/

void modexpl3 (XPRBprob &p)
{

XPRBvar x[3];

XPRBlinExp le;

int i;

for (i=0;1i<2;i++) x[i]=p.newVar (XPRBnewname ("x_%d",i), XPRB_UI, 0, 100);

/* Create the constraints:
Cl: 2x0 + 3x1 >= 41

C2: x0 + 2x1 = 13 x/
p.newCtr ("C1", 2+x[0] + 3+x[1] >= 41);
p.newCtr ("C2", x[0] + 2xx[1] == 13);

// Uncomment the following line to cause an error in the model that
// triggers the user error handling:

// x[2]=p.newVar ("x_2", XPRB_UI, 10,1);

le=0;

for (i=0;1i<2;i++) le += x[i]; // Objective: minimize x0+x1

p.setObj(le); // Select objective function

p.setSense (XPRB_MINIM) ; // Set objective sense to minimization

p.solve(""); // Solve the LP

XPRBprintf (p.getCRef (), "problem status: %d LP status: %d MIP status: %d\n",
p.getProbStat (), p.getLPStat (), p.getMIPStat());

// This problem is infeasible, that means the following command will fail.
// It prints a warning if the message level is at least 2

XPRBprintf (p.getCRef (), "Objective: %$g\n", p.getObjval());

for (i=0;1<2;i++) // Print solution values
XPRBprintf (p.getCRef (), "%$s:%g, ", x[i].getName (), x[i].getSol());
XPRBprintf (p.getCRef (), "\n");

}

Jxkkk ok kkhk ok ok ok Ak kA kA kA ok Ak kkk ok h ok h ok kA ok k ok kkkk ok hkhkk ok kkkk kA kkk Ak kkkkkkkkkx/

int main ()
{
XPRBprob *p;

XPRBseterrctrl (0); // Switch to error handling by the user’s program

XPRB: :setMsgLevel (2); // Set the printing flag. Try other values:
// 0 - no printed output, 1 - only errors,
// 2 - errors and warnings, 3 - all messages

// Define the callback functions:
XPRBdefcbmsg (NULL, userprint, NULL);
XPRBdefcberr (NULL, usererror, NULL);

try

{

p=new XPRBprob ("Expl3"); // Initialize a new problem in BCL
}

catch (bcl_exception &e)

{

cout << e.code << ":" << e.msg;

return 1;

}

try

{

modexpl3 (xp) ; // Formulate and solve the problem
}

catch (bcl_exception &e)

{

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 180

cout << e.code << ":" << e.msg << "\n";
return 2;

}

catch (const char =m)

{

cout << m << "\n";

return 3;

}
catch(...)

{

cout << "other exception\n";
return 4;

}
return 0;

}

5.2 C++ class reference

The complete set of classes of the BCL C++ interface is summarized in the following list:

XPRB Initialization and general settings. p. 183
XPRBbasis Methods for accessing bases. p. 187
XPRBctr Methods for modifying and accessing constraints and operators for
constructing them. p. 189
XPRBcut Methods for modifying and accessing cuts and operators for
constructing them. p. 204
XPRBexpr Methods and operators for constructing linear and quadratic
expressions. p.210
XPRBindexSet Methods for accessing index sets and operators for adding and
retrieving set elements. p-216
XPRBprob Problem definition, including methods for creating and deleting the
modeling objects, problem solving, changing settings, and retrieving
solution information. p. 220
XPRBrelation Methods and operators for constructing linear or quadratic relations
from expressions. p. 244
XPRBsos Methods for modifying and accessing Special Ordered Sets and
operators for constructing them. p. 246
XPRBvar Methods for modifying and accessing variables. p. 251

The method isvalid may require some explanation: it should be used in combination with
methods getVarByName, get CtrByName etc. These methods always return an object of the
desired type, unlike the corresponding functions in standard BCL which return a NULL pointer if
the object was not found. Only with method isvalid it is possible to test whether the object is a
valid object, that is, whether it is contained in a problem definition.

All C++ classes that have a direct correspondence with modeling objects in BCL (namely
XPRBprob, XPRBvar, XPRBctr, XPRBcut, XPRBsos, XPRBindexSet, XPRBbasis) take the same
names, with the exception of xPrREindexset. The corresponding BCL modeling object in C can
be obtained from each of these classes, with the method getCRref. It is also possible to obtain
the Xpress-Optimizer problem corresponding to a BCL C++ problem by using method

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 181

XPRBprob.getXPRSprob. Please see Section B.6 for further detail on using BCL C++ with the
Optimizer library.

Most of the methods of the classes with direct correspondence to C modeling objects call
standard BCL C functions, as indicated, and return their result.

The major difference between the C and C++ interfaces is in the way linear and quadratic
expressions and constraints are created. In C++, the algebraic operators like + or == are
overloaded so that constraints may be written in a form that is close to an algebraic formulation.

Some additional classes have been introduced to aid the termwise definition of constraints with
overloaded arithmetic operators. Linear and quadratic expressions (class xPRBexpr) are required
in the definition of constraints and Special Ordered Sets. Linear and quadratic relations (class
¥PRBrelation), may be used as an intermediary in the definition of constraints.

Another class that does not correspond to any standard BCL modeling object is the class xPRE that
contains methods relating to the initialization of BCL and the general status of the software.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 182

XPRB

Description
Initialization and general settings.
Methods
int getTime () ;
Get the running time.
const char xgetVersion();
Get the version number of BCL.
int init ();
Initialize BCL.
int setColOrder (int num) ;
Set a column ordering criterion for matrix generation.
int setMsgLevel (int lev);
Set the message print level.
int setRealFmt (String fmt);
Set the format for printing real numbers.

Method detail

getTime

Synopsis
int getTime () ;

Return value System time measure in milliseconds.

Description This methods returns the system time measure in milliseconds. The absolute value is
system-dependent. To measure the execution time of a program, this methods can be
used to calculate the difference between the start time and the time at the desired
point in the program.

Example This example shows how to measure the elapsed time in a BCL program:

int starttime;
XPRB::init () ;
starttime = XPRB::getTime () ;

cout << "Time: " << (XPRB::getTime ()-starttime)/1000;
cout << " sec" << endl;

Related topics Calls xPRERgettime

getVersion

Synopsis

const char xgetVersion();

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 183

Return value BCL version number if function executed successfully, NULL otherwise.

Description The version number returned by this method is required if the user is reporting a
problem.
Example The following example retrieves and prints out the BCL version number:

const char *version;

XPRB::init () ;

version = XPRB::getVersion();

cout << "Xpress—-BCL version " << version << endl;

Related topics Calls xPRBgetversion

init

Synopsis
int init ();

Return value 0 if initialization executed successfully, 1 otherwise.

Description This method explicitly initializes BCL, that is it tests whether a license for running this
software is available. Without this explicit initialization the initialization will be
performed at the creation of the first problem (see xPrREprob). There is no need to call
this explicit initialization unless you wish to separate the license check from problem
creation or perform some general settings before creating any problem. This method
also initializes Xpress-Optimizer.

Example This example shows how to initialize BCL explicitly before creating a problem.

XPRBprob xprob;

if (XPRB::init())
{ cout << "Initialization failed" << endl; return 1; }
prob = new XPRBprob ("myprob");

Related topics Calls xPRBinit

setColOrder
Synopsis
int setColOrder (int num) ;
Argument num The ordering flag, which must be one of:
0 default ordering;
1 alphabetical order.
Return value 0 if method executed successfully, 1 otherwise.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 184

Description 1. BCL runs reproduce always the same matrix for a problem. This method allows the user
to choose a different ordering criterion than the default one. Note that this method
only changes the order of columns in what is sent to Xpress-Optimizer, you do not see
any effect when exporting the matrix with BCL. However you can control the effect by
exporting the matrix from the Optimizer.

2. The setting applies to all problems that are created subsequently. It is also possible to
change the setting for a particular problem (see xPREprob).

Related topics Calls xPRBsetcolorder

setMsgLevel

Synopsis
int setMsglLevel (int lev);

Argument level The message level, i.e. the type of messages printed by BCL. This may be one of:
0 no messages printed;
1 error messages only printed;
2 warnings and errors printed;
3 warnings, errors, and Optimizer log printed (default);
4 all messages printed.

Return value 0 if method executed successfully, 1 otherwise.

Description 1. BCL can produce different types of messages; status information, warnings and errors.
This function controls which of these are output. For settings 1 or higher, the corre-
sponding Optimizer output is also displayed. In addition to this setting, the amount of
Optimizer output can be modified through several Optimizer printing control parameters
(see the ‘Xpress-Optimizer Reference Manual’).

2. The setting applies to all problems that are created subsequently. It is also possible to
change the setting for a particular problem (see xPrREprob).

Example See XPRBprob. setMsgLevel.

Related topics Calls xPRERsetmsglevel

setRealFmt
Synopsis
int setRealFmt (String fmt);
Argument fmt Format string (as used by the C function print £). Simple format strings are of
the form $n where n may be, for instance, one of
g default printing format (precision: 6 digits; exponential notation if the
exponent resulting from the conversion is less than -4 or greater than or
equal to the precision)
.numf print real numbers in the style [-]d.d where the number of digits after the
decimal point is equal to the given precision num.
Return value 0 if method executed successfully, 1 otherwise.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 185

Description 1. In problems with very large or very small numbers it may become necessary to change the
printing format to obtain a more exact output. In particular, by changing the precision
it is possible to reduce the difference between matrices loaded in memory into Xpress-
Optimizer and the output produced by exporting them to a file.

2. The setting applies to all problems that are created subsequently. It is also possible to
change the setting for a particular problem (see xPREprob).

Example This example sets the BCL number printing format to 8 digits after the decimal point. It
then creates a problem and changes the number printing format for this problem back

to the default:

XPRBprob *prob;

XPRB::init () ;
XPRB::setRealFmt ("%.10f");

prob = new XPRBprob ("myprob");
prob->setRealFmt ("%g") ;

Related topics Calls xPRBsetreal fmt

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 186

XPRBbasis

Description
Methods for accessing bases.

Constructors
XPRBbasis () ;

XPRBbasis (xbbasis *bs);

Methods

xbbasis xgetCRef ();
Get the C modeling object.
bool isValid();
Test the validity of the basis object.

void reset ();
Reset the basis object.

Constructor detail

XPRBbasis
Synopsis

XPRBbasis () ;

XPRBbasis (xbbasis xbs);
Argument bs A basisin BCL C.
Description Create a new basis object.

Method detail

getCRef
Synopsis
xbbasis xgetCRef ();
Return value The underlying modeling object in BCL C.
Description This method returns the basis object in BCL C that belongs to the C++ basis object.
isValid
Synopsis

bool isValid();

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 187

Return value true if object is valid, false otherwise.

Description This method checks whether the basis object is correctly defined.
reset
Synopsis
void reset();
Description Clear the definition of the basis object; includes deletion of the underlying C object.
Example See XPRBprob.saveBasis.

Related topics Calls xPRERdelbasis

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 188

XPRBctr

Description

Methods for modifying and accessing constraints and operators for constructing them.

Constructors
XPRBctr () ;

XPRBctr (xbctr *c);
XPRBctr (xbctr *c, XPRBrelation& r);

Methods
void add (XPRBexpré& e);

Add an expression to a constraint.
int addTerm (XPRBvaré& var, double wval);
int addTerm(double val, XPRBvaré& var);
int addTerm (XPRBvaré& var);
int addTerm (double wval);
int addTerm (XPRBvaré& var, XPRBvaré& var2, double val);
int addTerm (double val, XPRBvaré& var, XPRBvaré& var2);

int addTerm (XPRBvar& var, XPRBvaré& var2);
Add a term to a constraint.

int delTerm (XPRBvaré& var);

int delTerm (XPRBvar& var, XPRBvaré& var2);
Delete a term from a constraint.

double getAct () ;
Get activity value for a constraint.

xbctr *getCRef ();

Get the C modeling object.
double getDual () ;

Get dual value.
int getIndicator();

Get the indicator type of a constraint.
XPRBvar getIndVar () ;

Get the indicator variable of a constraint.
const char *xgetName () ;

Get the name of a constraint.
int getRange (double *1lw, double x*up);

Get the range values for a range constraint.
double getRangeLl();

Get the lower range bound for a range constraint.
double getRangeU () ;

Get the upper range bound for a range constraint.
double getRHS () ;

Get the right hand side value of a constraint.
double getRNG (int rngtype);

Get ranging information for a constraint.
int getRowNum() ;

Get the row number for a constraint.

double getSlack();
Get slack value for a constraint.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

page 189

int

bool

bool

bool

bool

int

getType () ;
Get the row type of a constraint.
isDelayed () ;
Check the type of a constraint.

isIndicator () ;
Check the type of a constraint.
isModCut () ;
Check the type of a constraint.
isvalid();
Test the validity of the constraint object.
print () ;

Print out a constraint.

void reset ();

int

int

int

int

int

int

int

int

int

int

Operators

Assigning constraints and adding (linear or quadratic) expressions:

ctr
ctr
ctr

Reset the constraint object.

setDelayed (bool dstat);
Set the constraint type.

setIndicator (ind dir, XPRBvar);
Set the indicator constraint type.

setModCut (bool mstat);
Set the constraint type.

setRange (double 1w, double up);
Define a range constraint.

setTerm (XPRBvar& var, double val);
setTerm (double wval, XPRBvaré& var);

setTerm (double wval);

setTerm (XPRBvaré& var, XPRBvaré& var2,

setTerm (double val, XPRBvaré& var,
Set a constraint term.

setType (int type);
Set the constraint type.

= rel
+= expr
-= expr

Constructor detail

double wval);
XPRBvaré& var2);

XPRBctr
Synopsis
XPRBctr();
XPRBctr (xbctr =*c);
XPRBctr (xbctr xc, XPRBrelationé& r);
Arguments c A constraint in BCL C.
r Relation defining the constraint.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 190

Description

Method detail

Create a new constraint object.

add
Synopsis
void add (XPRBexpré& e);
Argument e A linear or quadratic expression (may be just a single variable or a constant).
Description This method adds a linear or quadratic expression to the left hand side of a constraint.
That means, if the expression contains a constant, this value is subtracted from the
constant representing the right hand side of the constraint.
Example See XPRBctr.setTerm.
addTerm
Synopsis
int addTerm (XPRBvaré& var, double val);
int addTerm(double val, XPRBvaré& var);
int addTerm (XPRBvaré& var);
int addTerm (double wval);
int addTerm (XPRBvar& var, XPRBvaré& var2, double val);
int addTerm(double val, XPRBvaré& var, XPRBvaré& var2);
int addTerm (XPRBvaré& var, XPRBvaré& var?);
Arguments var A BCL variable.

Return value

Description

Example

Related topics

var2 A second BCL variable (may be the same as var).

val Value of the coefficient of the variable var.
0 if method executed successfully, 1 otherwise.

This method adds a new term to a constraint, comprising the variable var (or the
product of variables var and var2) with coefficient val. If the constraint already has a
term with variable var (respectively variables var and var2), val is added to its
coefficient. If no variable is specified, the value val is added to the right hand side of
the constraint. Constraint terms can also be added with method xPrEct r.add.

See XPRBctr.setTerm.

Calls xPrBaddterm

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 191

delTerm

Synopsis

Arguments

Return value

Description

Related topics

int delTerm (XPRBvaré& var);
int delTerm (XPRBvaré& var, XPRBvaré& var2);

var A BCL variable.
var2 A second BCL variable (may be the same as var).

0 if method executed successfully, 1 otherwise.

This function deletes a variable term from the given constraint. The constant term (right
hand side value) is changed/reset with method xPRBctr.setTerm.

Calls xPRBdelterm

getAct

Synopsis

Return value

Description

Example

double getAct();
Activity value for the constraint, 0 in case of an error.

This method returns the activity value for a constraint. It may be used with constraints
that are not part of the problem (in particular, constraints without relational operators,
that is, constraints of type XPRB_N). In this case the function returns the evaluation of
the constraint terms involving variables that are in the problem. Otherwise, the
constraint activity is calculated as activity = RHS — slack.

If this method is called after completion of a global search and an integer solution has
been found (that is, if method xPREprob.getMIPStat returns values
XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value corresponding to the
best integer solution. If no integer solution is available after a global search this
function outputs a warning and returns 0. In all other cases it returns the activity value
in the last LP that has been solved. If this function is used during the execution of an
optimization process (for instance in Optimizer library callback functions) it needs to be
preceded by a call to xPrRBprob. sync with the flag XPRB_XPRS_SOL.

The following example shows how to retrieve solution values and some other
information for a constraint.

XPRBvar x,vy;
XPRBctr Ctrl;
XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);
y = prob.newVar ("y", XPRB_PL, 0, 200);
Ctrl = prob.newCtr ("Cl", 3xx + 2xy <= 400);

// Solve an LP problem

if (Ctrl.getRowNum() >= 0 && prob.getLPStat ()==XPRB_LP_OPTIMAL)
{
cout << Ctrl.getName () << ": activity: " << Ctrl.getAct();
cout << " = " << Ctrl.getRHS() << " - " << Ctrl.getSlack();

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 192

cout << ", dual: " << Ctrl.getDual() << endl;

}
else
cout << "No solution information available." << endl;

Related topics Calls xPRRgetact

getCRef

Synopsis
xbctr xgetCRef ();

Return value The underlying modeling object in BCL C.

Description This method returns the constraint object in BCL C that belongs to the C++ constraint
object.

getDual

Synopsis
double getDual () ;

Return value Dual value for the constraint, 0 in case of an error.

Description This function returns the dual value for a constraint. The user may wish to test first
whether this constraint is part of the problem, for instance by checking that the row
number is non-negative.
If this function is called after completion of a global search and an integer solution has
been found (that is, if function XPRBprob.getMIPStat returns values
XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value in the best integer
solution. If no integer solution is available after a global search this function outputs a
warning and returns 0. In all other cases it returns the dual value in the last LP that has
been solved. If this function is used during the execution of an optimization process (for
instance in Optimizer library callback functions) it needs to be preceded by a call to
XPRBprob.sync with the flag XPRB_XPRS_SOL.

Example See XPRBctr.getAct.

Related topics Calls xPREgetdual

getindicator

Synopsis
int getIndicator();

Return value 0 an ordinary constraint;
1 an indicator constraint with condition b = 1;
-1 an indicator constraint with condition b = 0;

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 193

Description
Example

Related topics

-2 an error has occurred.
This method returns the indicator status of the given constraint.
See XPRBctr.setIndicator.

Calls xPRERgetindicator

getindVar

Synopsis
Return value

Description

Example

Related topics

XPRBvar getIndVar () ;
A BCL variable.

This method returns the indicator variable associated with the given constraint. This
method always returns a BCL variable the validity of which needs to be checked with
XPRBvar.isValid.

See XPRBctr.setIndicator.

Calls xPRRgetindvar

getName

Synopsis

Return value

Description

Example

Related topics

const char xgetName () ;
Name of the constraint if function executed successfully, NULL otherwise

This method returns the name of a constraint. If the user has not defined a name the
default name generated by BCL is returned.

See XPRBctr.getAct.

Calls xPRBgetctrname

getRange
Synopsis
int getRange (double xlw, double =xup);
Arguments 1w Lower bound on the range constraint.
up Upper bound on the range constraint.

Return value
Description

Related topics

0 if method executed successfully, 1 otherwise.
This method returns the range values of the given constraint.

Calls xPRBRgetrange

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 194

getRangelL

Synopsis

Return value
Description
Example

Related topics

double getRangelL();

Lower bound on the range constraint.

This method returns the lower bound on the range defined for the given constraint.
See XPRBctr.setRange.

Calls xPRERgetrange

getRangeU

Synopsis

Return value
Description
Example

Related topics

double getRangelU() ;

Upper bound on the range constraint.

This method returns the upper bound on the range defined for the given constraint.
See XPRBctr.setRange.

Calls xPRBgetrange

getRHS

Synopsis
Return value

Description

Example

Related topics

double getRHS();
Right hand side value of the constraint, 0 in case of an error.

This method returns the right hand side value (i.e. the constant term) of a previously
defined constraint. The default right hand side value is 0. If the given constraint is a
ranged constraint this function returns its upper bound.

See XPRBctr.getAct.

Calls xPRBRgetrhs

getRNG

Synopsis

double getRNG (int rngtype);

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 195

Argument rngtype The type of ranging information sought. This is one of:
XPRB_UPACT upper activity;
XPRB_LOACT lower activity;

XPRB_UUP upper unit cost;
XPRB_UDN lower unit cost.
Return value Ranging information of the required type.
Description This method can only be used after solving an LP problem. Ranging information for MIP

problems can be obtained by fixing all discrete variables to their solution values and
re-solving the resulting LP problem.

Example The following example displays the constraint activity and the activity range.

XPRBvar x,vy;
XPRBctr Ctrl;
XPRBprob prob ("myprob");

x = prob.newVar ("x", XPRB_PL, 0, 200);
= prob.newVar ("y", XPRB_PL, 0, 200);
trl = prob.newCtr ("Cl", 3xx + 2xy <= 400);

// Solve the problem

cout << "Cl: " << Ctrl.getAct() << " (activity range: ";
cout << Ctrl.getRNG (XPRB_LOACT) << ", " ;
cout << Ctrl.getRNG (XPRB_UPACT) << ")" << endl;

Related topics Calls XxPRRgetctrrng

getRowNum
Synopsis
int getRowNum() ;
Return value Row number (non-negative value), or a negative value.
Description This method returns the matrix row number of a constraint. If the matrix has not yet

been generated or the constraint is not part of the matrix (constraint type XxPRB_N or no
non-zero terms) then the return value is negative. To check whether the matrix has been
generated, use method xPRBprob.getProbstat. The counting of row numbers starts
with 0.

Example See XPRBctr.getAct.

Related topics Calls xPRBget rownum

getSlack
Synopsis
double getSlack();
Return value Slack value for the constraint, 0 in case of an error.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 196

Description

Example

Related topics

This method returns the slack value for a constraint. The user may wish to test first
whether this constraint is part of the problem, for instance by checking that the row
number is non-negative.
If this function is called after completion of a global search and an integer solution has
been found (that is, if method xPRERprob.getMIPStat returns values
XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value in the best integer
solution. If no integer solution is available after a global search this function outputs a
warning and returns 0. In all other cases it returns the slack value in the last LP that has
been solved. If this function is used during the execution of an optimization process (for
instance in Optimizer library callback functions) it needs to be preceded by a call to
XPRBprob.sync with the flag XPRB_XPRS_SOL.

See XPRBctr.getAct.

Calls xPREgetslack

getType

Synopsis

Return value

Description
Example

Related topics

int getType();

XPRB_L
XPRB_G
XPRB_E
XPRB_N
XPRB_R
-1

‘less than or equal to’ inequality;
‘greater than or equal to’ inequality;
equality;

a non-binding row (objective function);
a range constraint;

an error has occurred.

This method returns the constraint type if successful, and -1 in case of an error.

See XPRBctr.setRange.

Calls xPRRgetctrtype

isDelayed

Synopsis

Return value

Description

Related topics

bool isDelayed();

true if constraint is delayed constraint, false otherwise.

This method indicates whether the given constraint is a delayed or an ordinary
constraint.

Calls xPRBgetdelayed

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 197

isindicator

Synopsis

Return value

Description

Related topics

bool isIndicator();
true if constraint is an indicator constraint, false otherwise.

This method indicates whether the given constraint is an indicator or an ordinary
constraint.

Calls xPREgetindicator

isModCut

Synopsis

Return value

Description

Related topics

bool isModCut () ;
true if constraint is a model cut, false otherwise.

This method indicates whether the given constraint is a model cut or an ordinary
constraint.

Calls xPRBgetmodcut

isValid

Synopsis

Return value

bool isValid();

true if object is valid, false otherwise.

Description This method checks whether the constraint object is correctly defined. It should always
be used to test the result returned by xPRBprob.getCt rByName.

Example See XPRBprob.getCtrByName.

print

Synopsis

Return value

Description

Example

Related topics

int print();
0 if function executed successfully, 1 otherwise.

This method prints out a constraint in LP format. It is not available in the student
version.

See XPRBctr.setRange.

Calls xPrREprintctr

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 198

reset

Synopsis
void reset ();
Description Clear the definition of the constraint object.
setDelayed
Synopsis
int setDelayed(bool dstat);
Argument dstat The constraint type, which must be one of:

Return value

Description 1.

Example

Related topics

false ordinary constraint;
true delayed constraint.

0 if method executed successfully, 1 otherwise.

This method changes the type of a previously defined constraint from ordinary constraint
to delayed constraint and vice versa. Delayed or ‘lazy’ constraints must be satisfied for any
integer solution, but will not be loaded into the active set of constraints until required.

. Constraint properties ‘model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mu-

tually exclusive. When changing from one of these types to another you must first reset
the correponding type to 0.

The following example turns the constraint ctr3 into a delayed constraint.

XPRBvar vy, b;
XPRBctr Ctr3;
XPRBprob prob ("myprob");

y = prob.newVar ("y", XPRB_PL, 0, 200);
b prob.newVar ("b", XPRB_RV);

Ctr3 = prob.newCtr ("C3", y >= 50xb);
Ctr3.setDelayed(true);

Calls xPrREsetdelayed

setindicator

Synopsis

Arguments

int setIndicator (ind dir, XPRBvar);

dir The indicator type, which must be one of:
0 ordinary constraint;
-1 indicator constraint with condition b = 0;
1 indicator constraint with condition b = 1.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 199

b previously created binary variable.
Return value 0 if method executed successfully, 1 otherwise.

Description 1. This method changes the type of a previously defined constraint from ordinary constraint
to indicator constraint and vice versa. Indicator constraints are defined by associating a
binary variable and an implication sense with a linear inequality or range constraint.

2. Constraint properties ‘model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mu-
tually exclusive. When changing from one of these types to another you must first reset
the correponding type to 0.

Example The following example turns the constraint Ctr3 into the indicator constraint
b=1= Ctr3.

XPRBvar vy, b;
XPRBctr Ctr3;
XPRBprob prob ("myprob");

y = prob.newVar ("y", XPRB_PL, 0, 200);
b prob.newVar ("b", XPRB_RV);

Ctr3 = prob.newCtr ("C3", y >= 50);
Ctr3.setIndicator (1, b);
if (Ctr3.isIndicator())
cout << Ctr3.getIndVar () .getName () << "->" << Ctr3.getName () << endl;

Related topics Calls xPRBsetindicator

setModCut
Synopsis
int setModCut (bool mstat);
Argument mstat The constraint type, which must be one of:
false constraint;
true model cut.
Return value 0 if method executed successfully, 1 otherwise.

Description 1. This method changes the type of a previously defined constraint from ordinary constraint
to model cut and vice versa.

2. Model cuts must be ‘true’ cuts, in the sense that they are redundant at the optimal MIP
solution. The Optimizer does not guarantee to add all violated model cuts, so they must
not be required to define the optimal MIP solution.

3. Constraint properties ‘model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mu-
tually exclusive. When changing from one of these types to another you must first reset
the correponding type to 0.

Example The following example turns the constraint Ct r3 into a model cut.

XPRBvar vy, b;
XPRBctr Ctr3;
XPRBprob prob ("myprob");

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 200

Related topics

y = prob.newVar ("y", XPRB_PL, 0, 200);
b = prob.newVar ("b", XPRB_RV);
Ctr3 = prob.newCtr ("C3", y >= 50xb);

Ctr3.setModCut (true);

Calls xPRBsetmodcut

setRange
Synopsis

int setRange (double lw, double up);
Arguments 1w Lower bound on the range constraint.

Return value

Description

Example

Related topics

up Upper bound on the range constraint.

0 if method executed successfully, 1 otherwise.

This method changes the type of a constraint to a range constraint within the bounds
specified by 1w and up. The constraint type and right hand side value of the constraint

are replaced by the type xPRB_R (range) and the two bounds.

The following example defines a constraint with the range bounds 100 and 500, adds 5
to the range bounds and prints them out. The constraint is then changed to an
inequality constraint whereby the upper range bound is transformed into the right
hand side. The output printed by this example is displayed in the commentaries.

XPRBvar x,Vy;
XPRBctr Ctrl;
XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);
y = prob.newVar ("y", XPRB_PL, 0, 200);
Ctrl = prob.newCtr ("C1l", 3xx + 2+y <= 400);

Ctrl.setRange (100,500);
Ctrl.addTerm(5);
if (Ctrl.getType ()
{

== XPRB_R)

cout << "C1l in [" << Ctrl.getRangelL() << ",";
cout << Ctrl.getRangeU() << "]" << endl;
Ctrl.setType (XPRB_G) ;

Ctrl.print(); // Cl:

}

Calls xPREsetrange

// Cl in

4

[105,505]

3xx + 2xy >= 505

BCL in C++

(©20009 Fair Isaac Corporation.

All rights reserved. page 201

setTerm

Synopsis

Arguments

Return value

Description

Example

Related topics

int setTerm(XPRBvaré& var, double val);

int setTerm(double val, XPRBvaré& var);

int setTerm(double wval);

int setTerm(XPRBvaré& var, XPRBvaré& var2, double val);
int setTerm(double val, XPRBvaré& var, XPRBvaré& var2);

var A BCL variable.
A second BCL variable (may be the same as var).
val Value of the coefficient of the variable var.

var?2

0 if method executed successfully, 1 otherwise.

This method sets the coefficient of a variable (or of the product of the two given
variables) to the value val. If no variable is specified, the right hand side of the
constraint is set to val.

This example sets the coefficient of variable y in constraint ctr1 to 5 and then adds a
linear expression and a constant term. The commentaries show the constraint
definitions resulting from the modifications. Please notice in particular the different
behavior of add and addTerm for the addition of constants.

XPRBvar x,Vy;
XPRBctr Ctrl;
XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);
y = prob.newVar ("y", XPRB_PL, 0, 200);

Ctrl = prob.newCtr ("C1l", 3xx + 2+y <= 400);

Ctrl.setTerm(5, Vy); // Cl: 3xx + 5%y <= 400
Ctrl.add(x+10); // Cl: 4%x + 5xy <= 390
Ctrl.setTerm(400); // Cl: 4d%x + 5%y <= 400
Ctrl.addTerm(5); // Cl: 4xx + 5%y <= 405

Calls XxPRBsetterm

setType
Synopsis
int setType (int type);

Argument type The constraint type, which must be one of:
XPRB_L ‘less than or equal to’ constraint;
XPRB_G 'greater than or equal to’ constraint;
XPRB_E an equality;
XPRB_N a non-binding row (objective function).

Return value

0 if method executed successfully, 1 otherwise.

Description This method changes the type of a previously defined constraint to inequality, equation
or non-binding. Method xPrRBEctr.setRange has to be used for changing the constraint
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 202

to a ranged constraint. If a ranged constraint is changed back to some other type with
this method, its upper bound becomes the right hand side value.

Example See XPRBctr.setRange.

Related topics Calls xPRBsetctrtype

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 203

XPRBcut

Description

Methods for modifying and accessing cuts and operators for constructing them.

Constructors

Methods

XPRBcut () ;
XPRBcut (xbcut =*c);
XPRBcut (xbcut #*c, XPRBrelation& r);

void add (XPRBexpré& le);
Add a linear expression to a cut.

int addTerm (XPRBvaré& var, double wval);
int addTerm(double val, XPRBvaré& var);
int addTerm (XPRBvaré& var);

int addTerm (double wval);
Add a term to a cut.

int delTerm (XPRBvaré& var);
Delete a term from a cut.

xbcut xgetCRef ();
Get the C modeling object.

int getlID();

Get the classification or identification number of a cut.

double getRHS () ;
Get the RHS value of a cut.

int getType();
Get the type of a cut.

bool isValid();
Test the validity of the cut object.

int print();
Print out a cut.

void reset ();
Reset the cut object.

int setID(int id);
Set the classification or identification number of a cut.

int setTerm (XPRBvaré& var, double val);
int setTerm(double val, XPRBvaré& var);
int setTerm (XPRBvaré& var);

int setTerm(double wval);
Set a cut term.

int setType (int type);
Set the type of a cut.

Operators

Assigning cuts and adding linear expressions:
cut = linrel

cut += linexp

cut —= linexp

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 204

Constructor detail

XPRBcut
Synopsis

XPRBcut () ;

XPRBcut (xbcut =*c);

XPRBcut (xbcut *c, XPRBrelationé& r);
Arguments c A cutinBCLC.

r Linear relation defining the cut.
Description Create a new cut object.

Method detail

add
Synopsis
void add (XPRBexpré& le);
Argument le A linear expression (may be a single variable or a constant).

Return value

0 if method executed successfully, 1 otherwise.

Description This method adds a linear expression to a cut. That means, if the linear expression
contains a constant, this value is subtracted from the constant representing the right
hand side of the cut.

Example This example defines a cut and then modifies its definition by adding a terms and
changing the coefficient of a variable. The resulting cut definitions (as displayed by
XPRBcut .print) are shown as comments. Please notice in particular the different
behavior of add and addTerm for the addition of constants.

XPRBvar x,vy,b;

XPRBcut Cut2;

XPRBprob prob ("myprob") ;

x = prob.newVar ("y", XPRB_PL, 0, 200);

y = prob.newVar ("y", XPRB_PL, 0, 200);

b = prob.newVar ("b", XPRB_BV);

Cut2 = prob.newCut (y <= 100«b, 1);

Cut2.add (x+2) ; // x + y = 100%b <= -2

Cut2.delTerm(x); // y — 100+b <= -2

Cut2.setTerm(0); // y — 100+xb <= 0

Cut2 += x+2; // x +y - 100xb <= -2

Cut2.addTerm (2); // x + y - 100xb <= 0

Cut2.setTerm(y, -5); // x — 5xy — 100xb <= 0
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 205

addTerm

Synopsis

Arguments

Return value

Description

Example

Related topics

int addTerm (XPRBvaré& var, double val);
int addTerm(double val, XPRBvaré& var);
int addTerm (XPRBvaré& var);

int addTerm(double wval);

var A BCL variable.
val Value of the coefficient of the variable var.

0 if method executed successfully, 1 otherwise.

This method adds a new term to a cut, comprising the variable var with coefficient val.
If the cut already has a term with variable var, val is added to its coefficient. If no
variable is specified, the value val is added to the right hand side of the cut. Cut terms
can also be added with method xPrBcut . add.

See XPRBcut .add.

Calls xPRBaddcutterm

delTerm
Synopsis

int delTerm (XPRBvaré& var);
Argument var A BCL variable.

Return value

Description

Example

Related topics

0 if method executed successfully, 1 otherwise.

This method removes a variable term from a cut. The constant term (right hand side
value) is changed/reset with method xPRrRBcut . setTerm.

See XPRBcut .add.

Calls XxPRBdelcutterm

getCRef

Synopsis

Return value

Description

xbcut xgetCRef ();
The underlying modeling object in BCL C.
This method returns the cut object in BCL C that belongs to the C++ cut object.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 206

getiD

Synopsis

Return value
Description
Example

Related topics

int getID();

Classification or identification number.

This method returns the classification or identification number of a cut.

See XPRBcut .setID.

Calls xPrREgetcutid

getRHS

Synopsis

Return value

Description

Related topics

double getRHS();

Right hand side (RHS) value (default 0).

This method returns the RHS value (= constant term) of a previously defined cut. The

default RHS value is 0.

Calls xPrRBgetcutrhs

getType

Synopsis

Return value

Description

Related topics

int getType();

XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)

-1 An error has occurred,

This method returns the type of the given cut.

Calls xPRBRgetcuttype

isValid

Synopsis

Return value

Description

bool isValid();

true if object is valid, false otherwise.

This method checks whether the cut object is correctly defined.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 207

print

Synopsis

Return value
Description
Example

Related topics

int print();

0 if function executed successfully, 1 otherwise.

This function prints out a cut in LP format. It is not available in the student version.

See XPRBcut .setID.

Calls xPRERprintcut

reset
Synopsis
void reset ();
Description Clear the definition of the cut object.
setlD
Synopsis
int setID(int id);
Argument id Classification or identification number.

Return value

Description

Example

Related topics

0 if method executed successfully, 1 otherwise.

This function changes the classification or identification number of a previously defined
cut. This change does not have any effect on the cut definition in Xpress-Optimizer if

the cut has already been added to the matrix with xPREprob.addCuts.

This example defines a cut and then modifies its ID and relation type. The resulting

output is shown in the comment.

XPRBvar vy, b;
XPRBcut Cutl;
XPRBprob prob ("myprob");

y = prob.newVar ("y", XPRB_PL, 0, 200);
b = prob.newVar ("b", XPRB_BRV);
Cutl = prob.newCut (y == 100xb);

Cutl.setID(1);
if (Cutl.getID()>0) Cutl.setType (XPRB_G);
Cutl.print(); // CUT(1l): vy — 100«b >= 0

Calls XxPRBsetcutid

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 208

setTerm

Synopsis

Arguments

Return value

Description

Example

Related topics

int
int
int
int
var

val

setTerm (XPRBvaré& var,
XPRBvaré& var) ;
setTerm (XPRBvaré& var);

(
setTerm (
(
(

setTerm

double val,

double wval);

A BCL variable.

Value of the coefficient of the variable var.

double val);

0 if method executed successfully, 1 otherwise.

This function sets the coefficient of a variable to the value val. If no variable is
specified, the right hand side of the cut is set to val.

See XPRBcut .add.

Calls XxPRBsetcutterm

setType
Synopsis

int setType (int type);
Argument type Type of the cut:

Return value

Description

Example

Related topics

XPRB_L < (inequality)
XPRB_G > (inequality)
XPRB_E = (equation)

0 if method executed successfully, 1 otherwise.

This function changes the type of the given cut. This change does not have any effect on
the cut definition in Xpress-Optimizer if the cut has already been added to the matrix
with the method xPRBprob.addcuts.

See XPRBcut .setID.

Calls xPRBsetcuttype

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 209

XPRBexpr

Description
Methods and operators for constructing linear and quadratic expressions.

Constructors
XPRBexpr (double d);

(
XPRBexpr (int 1i);

XPRBexpr (double d, XPRBvaré& v);

XPRBexpr (double d, XPRBvar& v, XPRBvaré& v2);
XPRBexpr (XPRBvars& v);

XPRBexpr (XPRBexpré& e);

Methods
XPRBexpré& add (XPRBexpré& e);

XPRBexpr& add (XPRBvaré& v);
Addition to an expression

int addTerm (XPRBvaré& var, XPRBvaré& var2, double val);
int addTerm (double val, XPRBvaré& var, XPRBvaré& var2);
int addTerm (XPRBvaré& var, double wval);

int addTerm (double val, XPRBvaré& var);

int addTerm (XPRBvaré& var);

int addTerm (double wval);
Add a term to an expression.

XPRBexpr& assign (XPRBexpré& e);
Copy an expression.

int delTerm (XPRBvaré& var);

int delTerm (XPRBvar& var, XPRBvaré& var2);
Delete a term from an expression.

double getSol();
Get evaluation of an expression.

XPRBexpr& mul (double d);

XPRBexpré& mul (XPRBexpré& e);
Multiply an expression by a constant factor or an expression.

XPRBexpr& negl();
Negation of an expression.

int setTerm (XPRBvaré& var, XPRBvaré& var2, double val);
int setTerm(double val, XPRBvaré& var, XPRBvar& var2);
int setTerm (XPRBvaré& var, double wval);
int setTerm(double wval, XPRBvaré& var);

int setTerm(double wval);
Set a term in an expression.

Operators
Assigning (elements to) expressions:
exprl += expr2
exprl —-= expr2
exprl = expr2

Composing expressions from other quadratic and linear expressions (expr), variables (var) and

double values (va1). The following operators are defined:

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

— var

- expr

exprl + exprZ2
exprl - expr2
expr x val
val * expr
var * val

val % var

var * val

var x expr

Throws exception ‘Non-quadratic expression’ if the result of the operation is not

quadratic

expr x var

Throws exception ‘Non-quadratic expression’ if the result of the operation is not

quadratic

exprl x expr2

Functions outside any class definition that generate quadratic expressions:

Throws exception ‘Non-quadratic expression’ if the result of the operation is not

quadratic

XPRBexpr sqgr (XPRBexpré& e);

XPRBexpr sqgr (XPRBvaré& var);

Square of an expression or variable.

Constructor detail

XPRBexpr

Synopsis

Arguments

Description

Method detail

XPRBexpr (double d);

XPRBexpr (int 1) ;

XPRBexpr (double d, XPRBvar& v);
(
(

XPRBexpr (double d, XPRBvaré& v, XPRBvar& v2);

XPRBexpr (XPRBvarg& v);
XPRBexpr (XPRBexpré& e);

d A real value.

i An integer value.

v,v2 BCL variables (may be the same).
e A linear or quadratic expression.

Create a new expression.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 211

add

Synopsis

Arguments

Return value

XPRBexpré& add (XPRBexpré& e);
XPRBexpr& add (XPRBvar& v);

e Alinear or quadratic expression (may be just a constant).
A BCL variable.

The modified expression.

Description This method adds an expression / constant / variable to the linear or quadratic
expression it is applied to.

Example See XPRBexpr.setTerm.

addTerm

Synopsis
int addTerm (XPRBvar& var, XPRBvaré& var2, double val);
int addTerm(double val, XPRBvaré& var, XPRBvaré& var2);
int addTerm (XPRBvaré& var, double val);
int addTerm(double val, XPRBvaré& var);
int addTerm (XPRBvaré& var);
int addTerm (double wval);

Arguments var,var2 BCL decision variables (may be the same).

Return value

val A real value (coefficient).

The modified expression.

Description This method adds a new term to an expression comprising the variable var (or the
product of variables var and var2) with coefficient val. If the expression already has a
term with variable var (respectively variables var and var2), val is added to its
coefficient. If no variable is specified, the value val is added to the constant term of the
expression. Terms can also be added with method xPRrREexpr.add.

Example See XPRBexpr.setTerm.

assign

Synopsis
XPRBexpré& assign (XPRBexpré& e);

Argument e Expression to be copied.

Return value

Description

Copy of the expression in the argument.

This method copies the given expression.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 212

delTerm

Synopsis

Argument

Return value

int delTerm (XPRBvaré& var);
int delTerm (XPRBvaré& var, XPRBvaré& var2);

var,var2 BCL decision variables (may be the same).

The modified expression.

Description This function deletes a variable term from an expression. The constant term is changed
or reset with method xPREexpr.setTerm.

Example See XPRBexpr.setTerm.

getSol

Synopsis

Return value

Description

double getSol();
Evaluation of the expression with the last solution.

This method returns the evaluation of an expression with the solution values from the
last solution found. If this method is called after completion of a global search and an
integer solution has been found (that is, if method xPrREBprob.getMIPStat returns
values XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value corresponding
to the best integer solution. If no integer solution is available after a global search this
method outputs a warning and returns 0. In all other cases it returns the evaluation
corresponding to the last LP that has been solved. If this method is used during the
execution of an optimization process (for instance in Optimizer library callback
functions) it needs to be preceded by a call to xPrREprob. sync with the flag
XPRB_XPRS_SOL.

mul

Synopsis

Arguments

Return value

Error handling

XPRBexpr& mul (double d);
XPRBexpré& mul (XPRBexpré& e);

d A constant.
e An expression (may be just a constant or a single decision variable).
The modified expression.

ArithmeticException ‘Non-quadratic expression’ if the result of the operation is not
quadratic.

Description This method multiplies an expression by a constant factor or another expression. This
operation succeeds if one of the expressions is just a constant or if both expressions have
only linear terms.

Example See XPRBexpr.setTerm.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 213

neg

Synopsis

Return value

XPRBexpr& negl);

Negation of the expression.

Description This method multiplies an expression with -1.

Example See XPRBexpr.setTerm.

setTerm

Synopsis
int setTerm(XPRBvaré& var, XPRBvaré& var2, double val);
int setTerm(double val, XPRBvaré& var, XPRBvaré& var2);
int setTerm (XPRBvaré& var, double val);
int setTerm(double val, XPRBvaré& var);
int setTerm(double wval);

Arguments var,var2 BCL decision variables (may be the same).

Return value

val A real value (coefficient).

The modified expression.

Description This method sets the coefficient of a variable or of the product of the two specified
variables to the value val. If no variable is specified, the constant term of the expression
is set to val.

Example This example shows different ways of defining and modifying a quadratic expression
and finally sets the resulting expression as objective function. The comments display the
definition of ge after each modification.

XPRBvar x,Vy;

XPRBexpr dge;

XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);

y = prob.newVar ("y", XPRB_PL, 0, 200);

qe = x; /] x

ge.mul (3*x); // 3xx"2

ge += x*2xy; // 3%xx"2 + 2%xxy
ge.add (1) ; // 1+ 3%x"2 + 2xx*y
ge.setTerm (3, x); // 1+ 3%x + 3%x"2 + 2%x*xy
ge.setTerm (0, x, V); // 1 + 3xx + 3xx"2
ge.delTerm(x, Xx); // 1 4+ 3*x
ge.setTerm(-1); // - 1 + 3*x
ge.addTerm (2, x); // - 1 4+ 5xx

ge —= 3%sdr (3xy); // = 1 + 5xx — 27xy"2
ge.neg () ; // 1 — 5xx 4+ 27+y"2
prob.setObj(ge);

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 214

sqr

Synopsis

Arguments

Return value

XPRBexpr sqr (XPRBexpré& e);
XPRBexpr sqgr (XPRBvaré& var);

e An expression.
var A BCL decision variable.

The square of the variable or expression in the argument.

Description This function returns the square of the variable or expression passed in the argument if
the result is at most quadratic.

Example See XPRBexpr.setTerm.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 215

XPRBindexSet

Description
Methods for accessing index sets and operators for adding and retrieving set elements.

Constructors
XPRBindexSet () ;

XPRBindexSet (xbidxset =xiset);
Methods
int addElement (const char =*text);
Add an index to an index set.
xbidxset *getCRef ();
Get the C modeling object.
int getIndex(const char =*text);
Get the index number of an index.
const char xgetIndexName (int 1i);
Get the name of an index.
const char xgetName () ;
Get the name of an index set.
int getSize();
Get the size of an index set.
bool isValid();
Test the validity of the index set object.
int print();
Print out an index set
void reset ();
Reset the index set object.

Operators
Adding an element to an index set:
iset += text
Accessing index set elements by their name or index number:
int iset[text]
const char *iset/[val]

Constructor detail

XPRBindexSet

Synopsis

XPRBindexSet () ;

XPRBindexSet (xbidxset =*iset);
Argument iset AnindexsetinBCL C.

Description Create a new index set object.

Method detail

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

page 216

addElement

Synopsis

Argument
Return value

Description

Example

Related topics

int addElement (const char xtext);
text Name of the index to be added to the set.
Sequence number of the index within the set, -1 in case of an error.

This method adds an index entry to an index set. The new element is only added to the
set if no identical index already exists. Both in the case of a new index entry and an
existing one, the method returns the sequence number of the index in the index set.
Note that the numbering of index elements starts with 0.

The following example shows how to add an element to an index set and then retrieve
its index and its name, (a) using the corresponding functions and (b) using the
overloaded operators of this class.

XPRBprob prob ("myprob");
XPRBindexSet ISet;
int ind;

ISet = prob.newIndexSet ("IS");
ind = ISet.addElement ("a");

cout << "First element: " << ISet.getIndexName (ind);

cout << ", index of 'a’: " << ISet.getlIndex("a") << endl;
ISet += "b"; // Add a second element

cout << "Element 1: " << ISet[1l];

cout << ", index of "b’: " << ISet["b"] << endl;

Calls xPrRBaddidxel

getCRef

Synopsis

Return value

xbidxset xgetCRef ();

The underlying modeling object in BCL C.

Description This method returns the index set object in BCL C that belongs to the C++ index set
object.

getindex

Synopsis
int getIndex(const char x*text);

Argument text Name of an index in the set.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 217

Return value

Description

Example

Related topics

Sequence number of the index in the set, or -1 if not contained.

An index element can be accessed either by its name or by its sequence number. This
method returns the sequence number of an index given its name.

See XPRBindexSet .addElement.

Calls xPRBgetidxel

getindexName

Synopsis

Argument
Return value

Description

Example

Related topics

const char xgetIndexName (int 1i);
i Index number.
Name of the i element in the set if function executed successfully, NULL otherwise.

An index element can be accessed either by its name or by its sequence number. This
method returns the name of an index set element given its sequence number.

See XPRBindexSet .addElement.

Calls XPRBgetidxelname

getName

Synopsis

Return value
Description
Example

Related topics

const char xgetName () ;

Name of the index set if function executed successfully, NULL otherwise.
This function returns the name of an index set.

See XPRBindexSet.getSize.

Calls xPRBgetidxsetname

getSize

Synopsis

Return value

int getSize();

Size (= number of elements) of the set, -1 in case of an error.

Description This function returns the current number of elements in an index set. This value does
not necessarily correspond to the size specified at the creation of the set. The returned
value may be smaller if fewer elements than the originally reserved number have been
added, or larger if more elements have been added. (In the latter case, the size of the
set is automatically increased.)

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 218

Example

Related topics

This example displays the name, size, and complete contents of an index set.

XPRBprob prob ("myprob") ;
XPRBindexSet ISet;

ISet = prob.newIndexSet ("IS");

cout << ISet.getName() << " size: " << ISet.getSize() << endl;

ISet.print ();

Calls XPRBgetidxsetsize

isValid

Synopsis

Return value

bool isValid();

true if object is valid, false otherwise.

Description This method checks whether the index set object is correctly defined. It should always be
used to test the result returned by xPRBprob.get TndexSetByName.

Example See XPRBprob.getIndexSetByName

print

Synopsis

Return value
Description
Example

Related topics

int print();

0 if function executed successfully, 1 otherwise.

This method prints out an index set. It is not available in the student version.

See XPRBindexSet.getSize.

Calls xPRRprintidxset

reset
Synopsis
void reset ();
Description Clear the definition of the index set object.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 219

XPRBprob

Description

Problem definition, including methods for creating and deleting the modeling objects, problem

solving, changing settings, and retrieving solution information.
Constructors

XPRBprob () ;

XPRBprob (const char xname);

Methods
int addCuts (XPRBcut =+cuts, int num);

Add cuts to a problem.

void clearDir();
Delete all directives.

void delCtr (XPRBctré& ctr);
Delete a constraint.

void delCut (XPRBcuté& cut);
Delete a cut definition.

volid delSos (XPRBsos& sos);
Delete a SOS.

int exportProb (int format, const char *filename);

int exportProb (int format);
Print problem matrix to a file.

xbprob *getCRef ();
Get the C modeling object.

XPRBctr getCtrByName (const char xname);
Retrieve a constraint by its name.

XPRBindexSet getIndexSetByName (const char s*name) ;
Retrieve an index set by its name.

int getLPStat();
Get the LP status.

int getMIPStat();
Get the MIP status.

const char xgetName () ;
Get the name of the problem.

int getNumIIS();
Get the number of independent IIS in an infeasible LP problem.

double getObijval () ;
Get the objective function value.

int getProbStat();
Get the problem status.

int getSense();
Get the sense of the optimization.

XPRBsos getSosByName (const char xname);
Retrieve a SOS by its name.

XPRBvar getVarByName (const char xname);
Retrieve a variable by its name.

XPRSprob getXPRSprob () ;
Returns an XPRSprob problem reference for a problem defined in BCL.

int loadBasis (const XPRBbasis& bas);

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

page 220

Load a previously saved basis.

int loadMat () ;
Load the problem into the Xpress-Optimizer.

int loadMIPSol (double xsol, int ncol, bool ifopt);

int loadMIPSol (double *sol, int ncol);
Load an integer solution into BCL or the Optimizer.

int maxim(const char xalg);
Maximize the objective function for the given problem.

int minim(const char xalgqg);

Minimize the objective function for the given problem.
XPRBctr newCtr (const char *name, XPRBrelationé& ac);
XPRBctr newCtr (const char *name);

XPRBctr newCtr (XPRBrelationé& ac);

XPRBctr newCtr();
Create a new constraint.

XPRBcut newCut (int id);
XPRBcut newCut (XPRBrelation& ac);
XPRBcut newCut (XPRBrelationé& ac, int id);

XPRBcut newCut () ;
Create a new cut.

XPRBindexSet newIndexSet ();
XPRBindexSet newIndexSet (const char xname) ;

XPRBindexSet newIndexSet (const char *name, int maxsize);
Create a new index set.

XPRBsos newSos (int type);
XPRBsos newSos (const char xname, int type);
XPRBsos newSos (int type, XPRBexpré& le);

XPRBsos newSos (const char *name, int type, XPRBexpré& le);

Create a SOS.
XPRBvar newVar (const char xname, int type, double lob, double upb);
XPRBvar newVar (const char xname, int type);

XPRBvar newVar (const char xname);

XPRBvar newVar () ;
Create a decision variable.
int print();
Print out the problem.
int printObij();
Print out the objective function of a problem.
int reset();
Release system resources used for storing solution information.
XPRBbasis saveBasis () ;
Save the current basis.
int setColOrder (int num) ;
Set a column ordering criterion for matrix generation.
int setCutMode (int mode) ;
Set the cut mode.
int setDictionarySize (int dict, int size);
Set the size of a dictionary.

(©20009 Fair Isaac Corporation. All rights reserved.

page 221

int
int
int
int
int
int
int
int
int

int

Constructor

setMsgLevel (int lev);

Set the message print level.
setObj (XPRBctr ctr);
setObj (XPRBexpr e);
setObj (XPRBvar v);

Select the objective function.

setRealFmt (const char xfmt);
Set the format for printing real numbers.

setSense (int dir);
Set the sense of the optimization.

solve (const char xalqg);

Call the Xpress-Optimizer solution algorithm.
sync (int synctype);

Synchronize BCL with the Optimizer.
writeDir () ;

writeDir (const char xfilename);
Write directives to a file.

detail

XPRBprob

Synopsis

Argument

Description

Related topics

XPRBprob () ;
XPRBprob (const char *name);

name The problem name. If none specified, BCL creates a unique name.

1. This method needs to be called to create and initialize a new problem. If BCL has not
been initialized previously this method also initializes BCL and Xpress-Optimizer. The
initialization / problem creation fails if no valid license is found.

2. When solving several instances of a problem simultaneously the user must make sure to

assign a different name to every instance.

Calls xPREnewprob

Method detail
addCuts
Synopsis
int addCuts (XPRBcut =cuts, int num);
Arguments cuts Array of previously defined cuts.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

Return value

Description

Example

Related topics

num Number of cuts in cuts.

0 if method executed successfully, 1 otherwise.

This function adds previously defined cuts to the problem in Xpress-Optimizer. It may
only be called from within the Xpress-Optimizer cut manager callback functions. BCL
does not check for doubles, that is, if the user defines the same cut twice it will be
added twice to the matrix. Cuts added at a node during the branch and bound search

remain valid for all child nodes but are removed at all other nodes.

This example show how to define the cut manager callback and add a cut to the

Optimizer problem.

int XPRS_CC cbNode (XPRSprob oprob, void xbp)
{
XPRBprob xbprob = (XPRBprobx*)bp;
XPRBcut aCut;
e // Define the cut ’aCut’
bprob->addCuts (&aCut, 1);

return 0; // Call this function once per node

}

int main(int argc, char x*argv)

{

XPRBprob prob ("myprob");

e // Define the problem
prob.setCutMode (1) ;
XPRSsetcbcutmgr (prob.getXPRSprob (), cbNode, &prob);

prob.maxim("g") ;
// Solution output
}

Calls xPrRBaddcuts

clearDir
Synopsis
void clearDir();
Description This method deletes all directives on decision variables and SOS defined for a problem.
Example This example defines directives for a binary variable and a SOS, writes out the directives

Related topics

to the file directout .dir and then deletes all directives.

XPRBvar b;

XPRBsos S02;

XPRBprob prob ("myprob");

b = prob.newVar ("b", XPRB_RV);

b.setDir (XPRB_UP) ; // Branch upwards first
S02.setDir (XPRB_PR, 1); // Highest branching priority
prob.writeDir ("directout");

prob.clearDir () ;

Calls xPRBcleardir

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 223

delCtr

Synopsis

Argument

Description

Related topics

void delCtr (XPRBctr& ctr);
ctr A BCL constraint.

Delete a constraint from the given problem. If this constraint has previously been
selected as the objective function (using function xPrRBprob.set0b1), the objective will
be set to NULL.

Calls xPRBdelctr

delCut
Synopsis
void delCut (XPRBcuté& cut);
Argument cut A BCL cut.
Description This method deletes the definition of a cut in BCL, but not the cut itself if it has already
been added to the problem held in Xpress-Optimizer (using xPREprob.addCuts).
Example See XPRBprob.newCut.

Related topics

Calls xPrRBdelcut

delSos
Synopsis
void delSos (XPRBsos& sos);
Argument sos A previously defined SOS of type 1 or 2.
Description This method deletes a SOS without deleting the variables it consists of.
Example See XPRBprob.newSos.

Related topics

Calls xPRBdelsos

exportProb
Synopsis
int exportProb (int format, const char xfilename);
int exportProb (int format);
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 224

Arguments

Return value

Description 1.

Example

Related topics

format The matrix output file format, which must be one of:
XPRB_LP LP file format (default);
XPRB_MPS MPS file format.

filename Name of the output file, without extension.

0 if method executed successfully, 1 otherwise.

This method prints the matrix to a file with an extended LP or extended MPS format. LP
files receive the extension . 1p and MPS files receive the extension .mat. This function is
not available in the student version.

. When exporting matrices semi-continuous and semi-continuous integer variables are pre-

processed: if a lower bound value greater than 0 is given, then the variable is treated like
a continuous (resp. integer) variable.

The following sets the sense of the optimization to maximization before exporting the
problem matrix in LP format.

XPRBprob prob ("myprob");
prob.setSense (XPRB_MAXIM) ;
prob.exportProb (XPRB_LP) ;

Calls xPRBRexportprob

getCRef

Synopsis

Return value

xbprob xgetCRef () ;

The underlying modeling object in BCL C.

Description This method returns the problem object in BCL C that belongs to the C++ problem
object.

getCtrByName

Synopsis
XPRBctr getCtrByName (const char xname);

Argument name The name of the constraint to find.

Return value

A BCL constraint.

Description This method always returns a BCL constraint the validity of which needs to be checked
with xPRBctr.isvalid. This method cannot be used if the names dictionary has been
disabled (see XPRBprob.setDictionarySize).

Example The following retrieves a constraint by its name and if it has been found prints it out.

XPRBprob prob ("myprob");
XPRBctr C2;
C2 = prob.getCtrByName ("C2");
if (C2.isValid{()) C2.print ();
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 225

Related topics

Calls XxPREBgetbyname

getindexSetByName

Synopsis

Argument
Return value

Description

Example

Related topics

XPRBindexSet getIndexSetByName (const char xname);
name The name of the index set to find.

A BCL index set.

This method always returns a BCL index set the validity of which needs to be checked
with XxPRBindexSet . isValid. This method cannot be used if the names dictionary has

been disabled (see xPRBprob.setDictionarySize).

The following retrieves an index by its name and if a set has been found prints it out.

XPRBprob prob ("myprob");
XPRBindexSet 1I2;

I2 = prob.getIndexSetByName ("IS");
if (I2.isValid()) I2.print();

Calls xPrREgetbyname

getLPStat

Synopsis

Return value

Description

Example

Related topics

int getlLPStat ();

0 the problem has not been loaded, or error;
XPRB_LP_OPTIMAL LP optimal;

XPRB_LP_INFEAS LP infeasible;

XPRB_LP_CUTOFF the objective value is worse than the cutoff;
XPRB_LP_UNFINISHED LP unfinished;

XPRB_LP_UNBOUNDED LP unbounded,;
XPRB_LP_CUTOFF_IN_DUAL LP cutoff in dual.

XPRB_LP_UNSOLVED QP problem matrix is not semi-definite.

The return value of this method provides LP status information from the
Xpress-Optimizer.

See XPRBprob.solve, XPRBctr.getAct.

Calls xPRBget 1lpstat

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 226

getMIPStat

Synopsis

Return value

Description
Example

Related topics

int getMIPStat();
XPRB_MIP_NOT_LOADED
XPRB_MIP_LP_NOT_OPTIMAL
XPRB_MIP_LP_OPTIMAL
XPRB_MIP_NO_SOL_FOUND
XPRB_MIP_SOLUTION

problem has not been loaded, or error;

LP has not been optimized;

LP has been optimized;

global search incomplete — no integer solution found;

global search incomplete, although an integer solution
has been found;

global search complete, but no integer solution found;

global search complete and an integer solution has
been found.

XPRB_MIP_INFEAS
XPRB_MIP_OPTIMAL

This methods returns the global (MIP) status information from the Xpress-Optimizer.
See XPRBprob.solve.

Calls xPRBgetmipstat

getName

Synopsis

Return value

Description

Related topics

const char xgetName () ;
Name of the problem if function executed successfully, NULL otherwise.

This method returns the problem name. If none was specified at the creation of the
problem, this is a unique name created by BCL.

Calls xPRERgetprobname

getNumlIS

Synopsis

Return value

Description

Related topics

int getNumIIS();

Number of independent IIS found by Xpress-Optimizer, or a negative value in case of
error.

This function returns the number of independent IIS (irreducible infeasible sets) of an
infeasible LP problem.

Calls xPRBgetnumiis

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 227

getObjVal

Synopsis

Return value

Description

Example

Related topics

double getObjval();
The current objective function value; default and error return value: 0.

This method returns the current objective function value from the Xpress-Optimizer. If it
is called after completion of a global search and an integer solution has been found
(that is, if XxPRBprob.getMIPStat returns values XPRB_MIP_SOLUTION or
XPRB_MIP_OPTIMAL), it returns the value of the best integer solution. In all other cases,
including during a global search, it returns the solution value of the last LP that has
been solved. If this function is used during the execution of an optimization process (for
instance in Optimizer library callback functions) it needs to be preceded by a call to
XPRBprob.sync with the flag XPRB_XPRS_SOL.

See XPRBprob.solve.

Calls xPREgetobjval

getProbStat

Synopsis

Return value

Description

Example

Related topics

int getProbStat ();

Bit-encoded BCL status information:
XPRB_GEN the matrix has been generated;

XPRB_DIR directives have been added;
XPRB_MOD the problem has been modified;
XPRB_SOL the problem has been solved.

This method returns the current BCL problem status. Note that the problem status uses
bit-encoding contrary to the LP and MIP status information, because several states may
apply at the same time.

See XPRBprob.getXPRSprob.

Calls xPRBgetprobstat

getSense

Synopsis

Return value

int getSense();
XPRB_MAXIM
XPRB_MINIM
-1 an error has occurred.

the objective function is to be maximized;
the objective function is to be minimized;

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 228

Description

Related topics

This method returns the objective sense (maximization or minimization). The sense is set
to minimization by default and may be changed with xPrRBprob.setSense,
XPRBprob.minim, and XPRBprob.maxim.

Calls xPRRgetsense

getSosByName

Synopsis

Argument
Return value

Description

Example

Related topics

XPRBsos getSosByName (const char xname);
name The name of the SOS to find.
A BCL SOS.

This method always returns a BCL SOS the validity of which needs to be checked with
XPRBsos.isValid. This method cannot be used if the names dictionary has been
disabled (see xPRBprob.setDictionarySize).

The following retrieves a SOS by its name and if it has been found prints it out.

XPRBprob prob ("myprob");
XPRBsos S2;

S2 = prob.getSosByName ("S02") ;
if (S2.isValid{()) S2.print () ;

Calls xPRBgetbyname

getVarByName

Synopsis

Argument
Return value

Description

Example

Related topics

XPRBvar getVarByName (const char *name);
name The name of the variable to find.
A BCL variable.

This method always returns a BCL variable the validity of which needs to be checked
with xPRBvar.isvalid. This method cannot be used if the names dictionary has been
disabled (see XPRBprob.setDictionarySize).

The following retrieves a variable by its name and if it has been found prints it out.

XPRBprob prob ("myprob");
XPRBvar b2;

b2 = prob.getVarByName ("b") ;
if (b2.isValid())
{ b2.print (); cout << endl; }

Calls xPRBgetbyname

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 229

getXPRSprob

Synopsis

Return value

Description

Example

Related topics

XPRSprob getXPRSprob () ;
Reference to a problem in Xpress-Optimizer if executed successfully, NULL otherwise

This method returns an XPRSprob problem reference for a problem defined in BCL and
subsequently loaded into the Xpress-Optimizer. The optimizer problem may be different
from the problem loaded in BCL if the solution algorithms have not been called (and the
problem has not been loaded explicitly) after the last modifications to the problem in
BCL, or if any modifications have been carried out directly on the problem in the
optimizer. See Section B.6 for further detail.

The following example shows how to change the setting of a control parameter of
Xpress-Optimizer.

XPRBprob bclProb ("myprob");
XPRSprob optProb;
// Define the BCL problem
if ((prob.getProbStat () &XPRB_MOD) == XPRB_MOD) prob.loadMat () ;
optProb = bclProb.getXPRSprob () ;
XPRSsetintcontrol (optProb, XPRS_PRESOLVE, O0);

Calls XxPRBget XPRSprob
g P

loadBasis
Synopsis

int loadBasis (const XPRBbasisé& bas);
Argument bas A previously saved basis.

Return value

Description

Example

Related topics

0 if method executed successfully, 1 otherwise.

This method loads a basis for the current problem. The basis must have been saved using
XPRBprob.saveBasis. It is not possible to load a basis saved for any other problem
than the current one, even if the problems are similar. This function takes into account
that the problem may have been modified (addition/deletion of variables and
constraints) since the basis has been stored. For reading a basis from a file, the
Optimizer library function XPRSreadbasis may be used. Note that the problem has to
be loaded explicitly (method xPrREprob. loadvat) before the basis is re-input with
XPRBprob.loadBasis. Furthermore, if the reference to a basis is not used any more it
should be deleted using xPRBbasis.reset.

See XPRBprob.saveBasis.

Calls xPRBloadbasis

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 230

loadMat

Synopsis

Return value

Description

Example

Related topics

int loadMat () ;
0 if method executed successfully, 1 otherwise.

This method calls the Optimizer library functions xPRS10adlp, XxPRS1oadgp,
XPRSloadglobal, or XxPRSloadgglobal to transform the current BCL problem
definition into a matrix in the Xpress-Optimizer. Empty rows and columns are deleted
before generating the matrix. Semi-continuous (integer) variables are preprocessed: if a
lower bound value greater than 0 is given, then the variable is treated like a continuous
(resp. integer) variable. Variables that belong to the problem but do not appear in the
matrix receive negative column numbers. Usually, it is not necessary to call this function
explicitly because BCL automatically does this conversion whenever it is required. To
force matrix reloading, a call to this function needs to be preceded by a call to
XPRBprob.sync with the flag XPRB_XPRS_PROB.

See XPRBprob.getXPRSprob.

Calls xPRBloadmat

loadMIPSol

Synopsis
int loadMIPSol (double xsol, int ncol, bool ifopt);
int loadMIPSol (double xsol, int ncol);

Arguments sol Array of size ncol holding the solution values.

Return value

Description

ncol Number of variables (continuous+discrete) in the problem.
ifopt Whether to load the solution into the Optimizer:

false load into BCL only (default);

true load solution into the Optimizer.
0 Solution accepted,
1 Solution rejected because it is infeasible,
2 Solution rejected because it is cut off,
3 Solution rejected because the LP reoptimization was interrupted,
-1 Solution rejected because an error occurred,
-2 The given solution array does not have the expected size,
-3 Error loading solution into BCL.

This method loads a MIP solution from an external source (e.g., the Xpress MIP Solution
Pool) into BCL or the Optimizer. The solution is given in the form of an array, indexed by
the column numbers of the decision variables. The size ncol of the array must
correspond to the number of columns in the matrix (generated by a call to
XPRBprob.loadMat or by starting an optimization run from BCL). If the solution is
loaded into BCL the values are accepted as is, if the solution is loaded into the Optimizer
(i fopt = true), the Optimizer will check whether the solution is acceptable and
recalculates the values for the continuous variables in the solution. In the latter case the

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 231

Example

Related topics

solution is loaded into BCL only once it has been successfully loaded and validated by
the Optimizer.

Load a MIP solution for problem prob into BCL, but not into the Optimizer. We know
that the problem has 5 variables.

XPRBprob prob ("myprob");
double wvals[] = {1.5, 1, 0, 4, 2.2};
- // Define + load the problem
if (prob.loadMIPSol (vals, 5)!=0)
cout << "Loading the solution failed." << endl;

Calls xPrRBRloadmipsol

maxim
Synopsis
int maxim(const char xalgqg);
Argument alg Choice of the solution algorithm, which should be one of:

Return value

Description

Example

Related topics

" " solve the problem using the recommended LP/QP algorithm (MIP problems
remain in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1™ relax all global entities (integer variables etc) in a MIP/MIQP problem and
solve it as a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem
is solved without this flag, only the initial LP/QP problem will be solved.

0 if method executed successfully, 1 otherwise.

This method selects and starts the Xpress-Optimizer solution algorithm. The characters
indicating the algorithm choice may be combined where it makes sense, e.g. "dg. If the
matrix loaded in the Optimizer does not correspond to the current state of the specified
problem definition it is regenerated automatically prior to the start of the algorithm.
Matrix reloading can also be forced by calling xPrRBprob. sync before the optimization.
Before solving a problem, the objective function must be selected with
XPRBprob.setOby. Note that if you use an incomplete global search you should finish
your program with a call to the Optimizer library function XPRSinitglobal in order to
remove all search tree information that has been stored. Otherwise you may not be able
to re-run your program.

See XPRBprob.solve.

Calls XxPRBmaxim

minim

Synopsis

int minim(const char =xalgqg);

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 232

Argument

Return value

Description

Example

Related topics

alg Choice of the solution algorithm, which should be one of:

" " solve the problem using the recommended LP/QP algorithm (MIP problems
remain in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1 relax all global entities (integer variables etc) in a MIP/MIQP problem and
solve it as a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem
is solved without this flag, only the initial LP/QP problem will be solved.

0 if method executed successfully, 1 otherwise.

This method selects and starts the Xpress-Optimizer solution algorithm. The characters
indicating the algorithm choice may be combined where it makes sense, e.g. "dg. If the
matrix loaded in the Optimizer does not correspond to the current state of the specified
problem definition it is regenerated automatically prior to the start of the algorithm.
Matrix reloading can also be forced by calling xPrRBprob. sync before the optimization.
Before solving a problem, the objective function must be selected with
¥PRBprob.setOb. Note that if you use an incomplete global search you should finish
your program with a call to the Optimizer library function XPRSinitglobal in order to
remove all search tree information that has been stored. Otherwise you may not be able
to re-run your program.

See XPRBprob.saveBasis, XPRBprob.solve.

Calls XxPRBminim

newCtr
Synopsis
XPRBctr newCtr (const char *name, XPRBrelationé& ac);
XPRBctr newCtr (const char *name);
XPRBctr newCtr (XPRBrelationé& ac);
XPRBctr newCtr();
Arguments name The constraint name (of unlimited length). May be NULL if not required.

Return value

ac A linear or quadratic relation.

A new BCL constraint.

Description This method creates a new constraint and returns the reference to this constraint, i.e.,
the constraint’s model name. If the indicated name is already in use, BCL adds an index
to it. If no constraint name is given, BCL generates a default name starting with CTR.
(The generation of unique names will only take place if the names dictionary is enabled,
see XPRBprob.setDictionarySize.)

Example These are a few examples of constraint creation.

XPRBvar x,vy;
XPRBctr Ctrl, Ctr2, Ctr4d, Profit;
XPRBexpr le;
XPRBprob prob ("myprob");
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 233

X = prob.newVar ("x", XPRB_PL, 0, 200);
y prob.newVar ("y", XPRB_PL, 0, 200);

Ctrl = prob.newCtr ("C1l", 3xx + 2xy >= 40);

Ctr2 = prob.newCtr ("C2", 3*xxxy + sqgr(y) <= 500);
Profit = prob.newCtr ("Profit", x+2xy);
prob.setObj (Profit);

le = x-5xy;
Ctr4 = prob.newCtr (le == 10);

Related topics Calls xPRBnewct r

newCut

Synopsis
XPRBcut newCut (int id);
XPRBcut newCut (XPRBrelationé& ac);
XPRBcut newCut (XPRBrelationé& ac, int id);
XPRBcut newCut () ;

Arguments ac A linear relation defining the cut (default: equality constraint).
id Cut classification or identification number (default 0).

Return value A new BCL cut.

Description This method creates a new cut. Cuts are loaded into the Optimizer by calling
¥PRBprob.addCuts from the Optimizer cutmanager callback.

Example The following example shows different possibilities of how to define cuts.

XPRBprob prob ("myprob");
XPRBvar vy, b;
XPRBcut Cutl, Cut2, Cut3;

y = prob.newVar ("y", XPRB_PL, 0, 200);
b = prob.newVar ("b", XPRB_BRV);

Cutl = prob.newCut (y == 100xb);
Cutl.setID(1);

Cut2 = prob.newCut (y <= 100xb, 2);

Cut3 = prob.newCut (3);
Cut3.setType (XPRB_L) ;
Cut3.add(y+2);
prob.delCut (Cut3);

Related topics Calls xPREnewcut

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 234

newlndexSet

Synopsis

Arguments

Return value

Description

Example

Related topics

XPRBindexSet newIndexSet ();
XPRBindexSet newIndexSet (const char =xname);
XPRBindexSet newIndexSet (const char xname, int maxsize);

name Name of the index set to be created. May be NULL if not required.

maxsize Maximum size of the index set.

A new BCL index set.

This method creates a new index set. Note that the indicated size maxsize corresponds
to the space allocated initially to the set, but it is increased dynamically if need be. If the
indicated set name is already in use, BCL adds an index to it. If no name is given, BCL
generates a default name starting with 1Dx. (The generation of unique names will only
take place if the names dictionary is enabled, see xPrRBprob.setbictionarySize.)

The following example defines an index set of size 10 and then adds two elemnts to the
set.

XPRBindexSet ISet;
XPRBprob prob ("myprob");
int ind;

ISet = prob.newIndexSet ("IS", 10);
ind = ISet.addElement ("a"); ISet += "b";

Calls XxPrRBnewidxset

newSos
Synopsis
XPRBsos newSos (int type);
XPRBsos newSos (const char xname, int type);
XPRBsos newSos (int type, XPRBexpré& le);
XPRBsos newSos (const char xname, int type, XPRBexpré& le);
Arguments name The name of the set.
type The set type, which must be one of:
XPRB_S1 Special Ordered Set of type 1 (default);
XPRB_S2 Special Ordered Set of type 2.
le A linear expression.

Return value

Description

Example

A new BCL SOS.

This method creates a Special Ordered Set (SOS) of type 1 or 2 (abbreviated SOS1 and
SOS2). If the indicated name is already in use, BCL adds an index to it. If no name is
given for the set, BCL generates a default name starting with sos. (The generation of
unique names will only take place if the names dictionary is enabled, see
XPRBprob.setDictionarySize.)

The following example defines the SOS-1 s01, prints is out (output displayed as
comment) and then deletes it. After this it defines an SOS-2 named s02.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 235

Related topics

XPRBvar x,v,z;
XPRBsos S01, S02;
XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);
y = prob.newVar ("y", XPRB_PL, 0, 200);
z = prob.newVar ("z", XPRB_PL, 0, 200);

SOl = prob.newSos ("SO1");

SOl.add (x+2xy+3%2z);

SOl.print (); // SOL(1): x(+1) y(+2) z(+3)
prob.delSos (SO1) ;

S02 = prob.newSos ("S02", XPRB_S2, 10xx+20x*y);

Calls XxPRBnewsos

newVar
Synopsis
XPRBvar newVar (const char xname, int type, double lob, double upb);
XPRBvar newVar (const char xname, int type);
XPRBvar newVar (const char =*name);
XPRBvar newVar () ;
Arguments name The variable name (of unlimited length). May be NULL if not required.

Return value

Description

Example

type The variable type, which may be one of:
XPRB_PL continuous (default);
XPRB_BV binary;
XPRB_UI general integer;
XPRB_PI partial integer;
XPRB_SC semi-continuous;
XPRB_SI semi-continuous integer.
lob The variable’s lower bound (default value: 0)

upb The variable’s upper bound (default value: XPRB_INFINITY)

A new BCL decision variable.

. The creation of a variable in BCL involves not only its name but also its type and bounds.

The method returns the BCL reference to the variable (i.e., a model variable). If the
indicated name is already in use, BCL adds an index to it. If no variable name is given, BCL
generates a default name starting with VAR. (The generation of unique names will only
take place if the names dictionary is enabled, see xPRBprob.setDictionarysize.) If
a partial integer, semi-continuous, or semi-continuous integer variable is being created,
the integer or semi-continuous limit (i.e. the lower bound of the continuous part for
partial integer and semi-continuous, and of the semi-continuous integer part for semi-
continuous integer) is set to the maximum of 1 and bdl. This value can be subsequently
modified with the method xPRBvar.setLim.

. The lower and upper bounds may take values of ~XPRB_INFINITY and XPRB_INFINITY

for minus and plus infinity respectively.

This example shows how to define different types of variables.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 236

Related topics

XPRBvar x,b, s;
XPRBprob prob ("myprob");

x = prob.newVar ("x"); // Continuous with default bounds
b = prob.newVar ("b", XPRB_BV); // Binary variable

s = prob.newVar ("s", XPRB_SC, O, // Semi-cont. in [0,50]
s.setLim(10); // with limit value 10

50) ;

Calls XxPRBnewvar

print

Synopsis

Return value

Description

Related topics

int print();
0 if function executed successfully, 1 otherwise.

This method prints out the complete problem definition currently held in BCL, that
means, the list of constraints, any Special Ordered Sets that have been defined, and the
objective function. This method is not available in the student version.

Calls xPREBprintprob

printObj

Synopsis

Return value

Description

Related topics

int printObij();
0 if function executed successfully, 1 otherwise.

This method prints out the objective function currently defined for a problem. This
method is not available in the student version.

Calls xPREprintob

reset

Synopsis

Return value

Description

int reset();
0 if method executed successfully, 1 otherwise.

This method deletes any solution information stored in BCL; it also deletes the
corresponding Xpress-Optimizer problem and removes any auxiliary files that may have
been created by optimization runs. It also resets the Optimizer control parameters for
spare matrix elements (EXTRACOLS, EXTRAROWS, and EXTRAELEMS) to their default
values. The BCL problem definition itself remains. This method may be used to free up
memory if the solution information is not required any longer but the problem
definition is to be kept for later (re)use.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 237

Related topics

Calls xPRBresetprob

saveBasis

Synopsis

Return value

Description

Example

Related topics

XPRBbasis saveBasis () ;
A BCL basis.

This method saves the current basis of a problem. The basis may be reinput using
XPRBprob.loadBasis. These two methods serve for storing bases in memory; for
writing a basis to a file, the Optimizer library function xPRSwritebasis may be used.
Note that there is no need to allocate space for the basis, but after its use, the basis
should be deleted using xPRBbasis.reset. You may have to switch linear presolve and
integer preprocessing off (Optimizer library controls PRESOLVE and MIPPRESOLVE) in
order for the saving and reloading of bases to work correctly.

The following saves a basis and after some modifications to the problem reloads the
problem and the saved basis into the Optimizer before re-solving the problem.

XPRBbasis bas;
XPRBprob prob ("myprob");

bas = prob.saveBasis () ;

. // Modify the problem
prob.loadMat () ;
prob.loadBasis (bas);
bas.reset ();
prob.minim () ;

Calls xPRBsavebasis

setColOrder

Synopsis

Argument

Return value

Description 1.

Related topics

int setColOrder (int num) ;

num The ordering flag, which must be one of:
0 default ordering;
1 alphabetical order.

0 if method executed successfully, 1 otherwise.

BCL runs reproduce always the same matrix for a problem. This method allows the user
to choose a different ordering criterion than the default one. Note that this method
only changes the order of columns in what is sent to Xpress-Optimizer, you do not see
any effect when exporting the matrix with BCL. However you can control the effect by
exporting the matrix from the Optimizer.

. To change this setting for all problems that are created subsequently use the correspond-

ing method of class xPRrE.

Calls xPRBsetcolorder

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 238

setCutMode

Synopsis

Argument

Return value

Description

Example

Related topics

int setCutMode (int mode) ;

mode Cut mode indicator:
0 switch cut mode off
1 switch cut mode on

0 if method executed successfully, 1 otherwise.

This function switches the cut mode on or off. It changes the settings of certain
Optimizer controls. Switching the cut mode off resets these controls to their default
values.

See XPRBprob.addCuts.

Calls XxPRBset cutmode

setDictionarySize

Synopsis

Arguments

Return value

Description 1.

Related topics

int setDictionarySize(int dict, int size);

dict Choice of the dictionary. Possible values:
XPRB_DICT_NAMES names dictionary
XPRB_DICT_IDX indices dictionary

size Non-negative value, preferrably a prime number; 0 disables the dictionary (for
names dictionary only).

0 if method executed successfully, 1 otherwise.

This function sets the size of the hash table of the names or indices dictionaries (defaults:
names 2999, indices 1009) of the given problem. It can only be called immediately after
the creation of the corresponding problem.

. The names dictionary serves for storing and accessing the names of all modeling objects

(variables, arrays of variables, constraints, SOS, index sets). Once it has been disabled it
cannot be enabled any more. All methods relative to the names cannot be used if this
dictionary has been disabled and BCL will not generate any unique names at the creation
of model objects. If this dictionary is enabled (default setting) BCL automatically resizes
this dictionary to a suitable size for your problem. If nevertheless you wish to set the size
by yourself we recommend to choose a value close to the number of variables+constraints
in your problem.

The indices dictionary serves for storing all index set elements. The indices dictionary
cannot be disabled, it is created automatically once an index set element is defined.

Calls XPRBsetdictionarysize

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 239

setMsgLevel

Synopsis
int setMsglLevel (int lev);
Argument level The message level, i.e. the type of messages printed by BCL. This may be one of:
0 no messages printed;
1 error messages only printed;
2 warnings and errors printed;
3 warnings, errors, and Optimizer log printed (default);
4 all messages printed.
Return value 0 if method executed successfully, 1 otherwise.

Description 1. BCL can produce different types of messages; status information, warnings and errors.
This function controls which of these are output. For settings 1 or higher, the corre-
sponding Optimizer output is also displayed. In addition to this setting, the amount of
Optimizer output can be modified through several Optimizer printing control parameters
(see the ‘Xpress-Optimizer Reference Manual’).

2. To change this setting for all problems that are created subsequently use the correspond-
ing method of class xPRrE.

Example The following example changes the global BCL message printing level to ‘errors’ only
and sets the printing level for problem prob back to the default. It also modifies the
values of the Optimizer printing controls for simplex and MIP logging.

XPRBprob prob ("myprob") ;

XPRB: :setMsglLevel (1) ;

prob.setMsglLevel (3);

XPRSsetintcontrol (prob.getXPRSprob (), XPRS_LPLOG, O0);
XPRSsetintcontrol (prob.getXPRSprob (), XPRS_MIPLOG, -500);

Related topics Calls xPREsetmsglevel

setObj
Synopsis
int setObj(XPRBctr ctr);
int setObj (XPRBexpr e);
int setObj(XPRBvar V) ;
Arguments ctr A BCL constraint.
e A linear or quadratic expression.
v A BCL decision variable.
Return value 0 if method executed successfully, 1 otherwise.
Description This functions sets the objective function by selecting a constraint the variable terms of

which become the objective function. This must be done before any optimization task is
carried out. Typically, the objective constraint will have the type XxPRB_N (non-binding),
but any other type of constraint may be chosen too. In the latter case, the equation or
inequality expressed by the constraint also remains part of the problem.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 240

Example

Related topics

See XPRBprob.newCtr.

Calls xPrRBsetob

setRealFmt
Synopsis
int setRealFmt (const char xfmt);
Argument fmt Format string (as used by the C function print £). Simple format strings are of
the form %n where n may be, for instance, one of
g default printing format (precision: 6 digits; exponential notation if the

Return value

Description

Example

Related topics

1.

exponent resulting from the conversion is less than -4 or greater than
or equal to the precision)

.numf print real numbers in the style [-]d.d where the number of digits after
the decimal point is equal to the given precision num.

0 if method executed successfully, 1 otherwise.

In problems with very large or very small numbers it may become necessary to change the
printing format to obtain a more exact output. In particular, by changing the precision
it is possible to reduce the difference between matrices loaded in memory into Xpress-
Optimizer and the output produced by exporting them to a file.

. To change this setting for all problems that are created subsequently use the correspond-

ing method of class xPRE.

See XPRB.setRealFmt.

Calls XxPrRBsetreal fmt

setSense
Synopsis
int setSense (int dir);
Argument dir Sense of the objective function, which must be one of:

Return value

Description

Example

Related topics

XPRB_MAXIM maximize the objective;
XPRB_MINIM minimize the objective.

0 if method executed successfully, 1 otherwise.

This method sets the optimization sense to maximization or minimization. It is set to
minimization by default.

See XPRBprob.exportProb.

Calls XxPRBset sense

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 241

solve

Synopsis

Argument

Return value

Description

Example

Related topics

int solve (const char xalgqg);

alg Choice of the solution algorithm, which should be one of:

" " solve the problem using the recommended LP/QP algorithm (MIP problems
remain in presolved state);

"d" solve the problem using the dual simplex algorithm;

"p" solve the problem using the primal simplex algorithm;

"b" solve the problem using the Newton barrier algorithm;

"n" use the network solver (LP only);

"1" relax all global entities (integer variables etc) in a MIP/MIQP problem and
solve it as a LP problem (problem is postsolved);

"g" solve the problem using the MIP/MIQP algorithm. If a MIP/MIQP problem
is solved without this flag, only the initial LP/QP problem will be solved.

0 if method executed successfully, 1 otherwise.

This method selects and starts the Xpress-Optimizer solution algorithm. The characters
indicating the algorithm choice may be combined where it makes sense, e.g. "dg. If the
matrix loaded in the Optimizer does not correspond to the current state of the specified
problem definition it is regenerated automatically prior to the start of the algorithm.
Matrix reloading can also be forced by calling xPrRBprob. sync before the optimization.
The sense of the optimization (default: minimization) can be changed with function

selected with xPrRBprob.setOb{. Note that if you use an incomplete global search you
should finish your program with a call to the Optimizer library function
XPRSinitglobal in order to remove all search tree information that has been stored.
Otherwise you may not be able to re-run your program.

The following example first maximizes the LP relaxation of a problem and then solves
the problem as a MIP. After each optimization run the objective function value is
displayed.

XPRBprob prob ("myprob");
.. // Define the problem
prob.setSense (XPRB_MAXIM) ;

prob.solve ("");
if (prob.getLPStat () == XPRB_LP_OPTIMAL)
cout << "LP solution: " << prob.getObjval () << endl;
prob.solve ("g");
if (prob.getMIPStat () == XPRB_MIP_OPTIMAL ||
prob.getMIPStat () == XPRB_MIP_SOLUTION)
cout << "MIP solution: " << prob.getObjVal () << endl;

Calls xPRBsolve

sync

Synopsis

int sync(int synctype);

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 242

Argument synctype Type of the synchronization. Possible values:
XPRB_XPRS_SOL update the BCL solution information with the solution
currently held in the Optimizer;
XPRB_XPRS_PROB force problem reloading.

Return value 0 if method executed successfully, 1 otherwise.
Description 1. This method resets the BCL problem status.

2. XPRB_XPRS_SOL: at the next solution access the solution information in BCL is updated
with the solution held in the Optimizer (after MIP search: best integer solution, otherwise
solution of the last LP solved).

3. XPRB_XPRS_PROB: at the next call to optimization or xPrRB1cadmat the problem is com-
pletely reloaded into the Optimizer; bound changes are not passed on to the problem
loaded in the Optimizer any longer.

Example The following forces BCL to reload the matrix into the Optimizer even if there has been
no change other than bound changes to the problem definition in BCL since the
preceding optimization / matrix loading.

XPRBprob prob ("myprob");

.. // Define + load the problem
prob.sync (XPRB_XPRS_PROB) ;
prob.solve ("g");

Related topics Calls xPRBsynC

writeDir

Synopsis
int writeDir ();
int writeDir (const char xfilename);

Argument filename Name of the directives files.

Return value 0 if method executed successfully, 1 otherwise.

Description This method writes out to a file the directives defined for a problem. If the given file
name does not include an extension the extension .dir is appended to it. When no file
name is given, the name of the problem is used. If a file of the given name exists already
it is replaced.

Example See XPRBprob.clearDir.

Related topics Calls xPRBwritedir

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 243

XPRBrelation (extends XPRBexpr)

Description
Methods and operators for constructing linear or quadratic relations from expressions.

Constructors
XPRBrelation (const XPRBexpré& e, int type);

XPRBrelation (const XPRBexpré& e);
XPRBrelation (const XPRBvaré& Vv);

Methods
int getType();

Get the relation type.

Operators
Creating relations by establishing relations between linear or quadratic expressions. The
following operators are defined outside any class definition:
exprl <= expr2
exprl >= expr2
exprl == expr2

Constructor detail

XPRBrelation

Synopsis
XPRBrelation (const XPRBexpré& e, int type);
XPRBrelation (const XPRBexpré& e);
XPRBrelation (const XPRBvaré& vVv);

Arguments e A linear or quadratic expression.
type The relation type, which must be one of:
XPRB_L ‘less than or equal to’ constraint;

XPRB_G 'greater than or equal to’ constraint;
XPRB_E an equality;
XPRB_N a non-binding row (default).

v A BCL variable.

Description Create a new linear or quadratic relation.

Method detail

getlType

Synopsis
int getType();

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 244

Return value XPRB_L ‘less than or equal to’ inequality;
XPRB_G ‘greater than or equal to’ inequality;
XPRB_E equality;
XPRB_N a non-binding row (objective function);
-1 an error has occurred.

Description This method returns the relation type if successful, and -1 in case of an error.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 245

XPRBsos

Description

Methods for modifying and accessing Special Ordered Sets and operators for constructing them.

Constructors
XPRBsos () ;

XPRBsos (xbsos *s);

XPRBsos (xbsos *s, XPRBexpré& 1);

Methods
void add(const XPRBexpré& le);

Add a linear expression to a SOS.
int addElement (XPRBvaré& var, double val);

int addElement (double val, XPRBvaré& var);
Add an element to a SOS.

int delElement (XPRBvaré& var) ;
Delete an element from a SOS.

xbsos xgetCRef () ;
Get the C modeling object.

const char xgetName () ;
Get the name of a SOS.
int getType();
Get the type of a SOS.

bool isValid();
Test the validity of the SOS object.

int print();

Print out a SOS
int setDir (int type, double val);
int setDir (int type);

Set a branching directive for a SOS.

Operators

Assigning and adding linear expressions to Special Ordered Sets:

set = linexp
set += linexp

Constructor detail

XPRBsos

Synopsis

XPRBsos () ;

XPRBsos (xbsos *s);

XPRBsos (xbsos xs, XPRBexpré& 1);
Arguments s ASOSinBCLC.

1 Linear expression defining the SOS.

Description Create a new SOS object.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved.

page 246

Method detail

add

Synopsis
void add(const XPRBexpré& le);

Argument le A linear expression.

Description This method adds the variables of a linear expression to a SOS, using their coefficients in
the linear expression as weights.

Example This example shows different ways of defining SOS and modifying their contents. The
resulting SOS definitions (as obtained with xPrREsos.print) and the output printed by
the program are displayed as comments.

XPRBvar x,Vy,z;
XPRBsos S01, S02;
XPRBprob prob ("myprob");
X = prob.newVar ("x", XPRB_PL, 0, 200);
y = prob.newVar ("y", XPRB_PL, 0, 200);
z = prob.newVar ("z", XPRB_PL, 0, 200);
SOl = prob.newSos ("SO1l", XPRB_S1);
SO1.add (x+2*y+3*z) ; // SO1(1l): x(+1) y(+2) =z (+3)
SOl += 2xz-Xx; // SOL(1): y(+2) z(+5)
cout << SOl.getName() << " type: ";
cout << (SOl.getType ()==XPRB_S17?1:2) << endl;
// SOl type: 1
S02 = prob.newSos ("S02", XPRB_S2, 10xx+20x*y);
S02.addElement (z, 5); // S02(2): x(+10) y(+20) z(+5)
S02.delElement (x); // S02(2): y(+20) =z (+5)

addElement

Synopsis
int addElement (XPRBvaré& var, double val);
int addElement (double val, XPRBvaré& var);

Arguments var Reference to a variable.
val The corresponding weight or reference value.

Return value 0 if function executed successfully, 1 otherwise

Description This method adds a single variable and its weight coefficient to a Special Ordered Set. If
the variable is already contained in the set, the indicated value is added to its weight.
Note that weight coefficients must be different from 0.

Example See XPRBsos . add.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 247

Related topics

Calls xPRBaddsosel

delElement
Synopsis

int delElement (XPRBvaré& var);
Argument var A BCL variable.

Return value
Description
Example

Related topics

0 if method executed successfully, 1 otherwise.
This function removes a variable from a Special Ordered Set.
See XPRBsos . add.

Calls xPRBdelsosel

getCRef

Synopsis

Return value

Description

xbsos xgetCRef () ;
The underlying modeling object in BCL C.
This method returns the SOS object in BCL C that belongs to the C++ SOS object.

getName

Synopsis

Return value

Description

Example

Related topics

const char xgetName () ;
Name of the SOS if executed successfully, NULL otherwise.

This method returns the name of a SOS. If the user has not defined a name the default
name generated by BCL is returned.

See XPRBsos . add.

Calls xPRRget sosname

getlype

Synopsis

Return value

int getType();
XPRB_S1 a Special Ordered Set of type 1;
XPRB_S2 a Special Ordered Set of type 2;

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 248

Description
Example

Related topics

-1 an error has occurred.
This method returns the type of a SOS.
See XPRBsos.add.

Calls xPRERget sostype

isValid

Synopsis

Return value

bool isValid();

true if object is valid, false otherwise.

Description This method checks whether the SOS object is correctly defined. It should always be used
to test the result returned by XxPREprob.get SosByName.

Example See XPRBprob.getSosByName.

print

Synopsis

Return value
Description
Example

Related topics

int print();

0 if function executed successfully, 1 otherwise.

This method prints out a SOS. It is not available in the student version.
See XPRBprob.get SosByName.

Calls xPRRprintsos

setDir
Synopsis
int setDir (int type, double wval);
int setDir (int type);
Arguments type The directive type, which must be one of:
XPRB_PR priority;
XPRB_UP first branch upwards;
XPRB_DN first branch downwards;
XPRB_PU pseudo cost on branching upwards;
XPRB_PD pseudo cost on branching downwards.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 249

Return value

Description

Example

Related topics

val An argument dependent on the type of the directive being defined. If type is:

XPRB_PR

XPRB_UP
XPRB_DN
XPRB_PU
XPRB_PD

val will be the priority value, an integer between 1 (highest) and 1000
(lowest), the default;

no input is required;

no input is required;

val will be the value of the pseudo cost for the upward branch;

val will be the value of the pseudo cost for the downward branch.

0 if method executed successfully, 1 otherwise.

This method sets any type of branching directive available in Xpress. This may be a
priority for branching on a SOS (type xPRB_PR), the preferred branching direction (types
XPRB_UP, XPRB_DN) or the estimated cost incurred when branching on a SOS (types
XPRB_PU, XPRB_PD). Several directives of different types may be set for a single set.
Method xPRBRvar.setDir may be used to set a directive for a variable.

See XPRBprob.clearDir.

Calls XxPRBsetsosdir

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 250

XPRBvar

Description
Methods for modifying and accessing variables.

Constructors
XPRBvar () ;

XPRBvar (xbvar =*v) ;

Methods

int

int

fix (double val);
Fix a variable.

getColNum() ;

Get the column number for a variable.

xbvar xgetCRef ();

Get the C modeling object.

double getlB();

Get the lower bound on a variable.

double getLim() ;
Get the integer limit for a partial integer or the semi-continuous limit for a
semi-continuous or semi-continuous integer variable.

const char xgetName () ;

Get the name of a variable.

double getRCost () ;

Get the reduced cost value.

double getRNG (int rngtype);

Get ranging information.

double getSol () ;

int

Get the solution value.

getType () ;
Get the type of a variable.

double getUB();

Get the upper bound on a variable.

bool isValid();

int

int

int

int

int

int

int

Test the validity of the variable object.

print () ;

Print out a variable.
setDir (int type, double wval);
setDir (int type);

Set a branching directive for a variable.

setLB (double wval);
Set a lower bound.

setLim(double wval);

Set the integer limit for a partial integer, or the lower semi-continuous limit for a

semi-continuous or semi-continuous integer variable.

setType (int type);
Set the variable type.

setUB (double val);
Set an upper bound.

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 251

Constructor detail

XPRBvar
Synopsis

XPRBvar () ;

XPRBvar (xbvar =*v);
Argument v Avariable in BCL C.
Description Create a new variable object.

Method detail

fix
Synopsis
int fix (double wval);
Argument val The value to which the variable is to be fixed.

Return value

Description

Related topics

0 if method executed successfully, 1 otherwise.

This method fixes a variable to the given value. It replaces calls to xPrEvar.setLB and
XPRBvar.setUB. The value val may lie outside the original bounds of the variable. If
the problem is loaded in the Optimizer, the bound change is passed on immediately
without any need to reload the problem.

Calls xPrRBfixvar

getColNum

Synopsis

Return value

Description

Example

Related topics

int getColNum() ;
Column number (non-negative value), or a negative value.

This method returns the column number of a variable in the matrix currently loaded in
the Xpress-Optimizer. If the variable is not part of the matrix, or if the matrix has not yet
been generated, the function returns a negative value. To check whether the matrix has
been generated, use function xPRBprob.getProbstat. The counting of column
numbers starts with 0.

See XPRBvar.getSol.

Calls xPRBRget colnum

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 252

getCRef

Synopsis

Return value

Description

xbvar xgetCRef ();
The underlying modeling object in BCL C.

This method returns the variable object in BCL C that belongs to the C++ variable object.

getLB

Synopsis

Return value
Description
Example

Related topics

double getLB();

Lower bound on the variable (default 0).

This method returns the currently defined lower bound on a variable.
See XPRBvar.getName.

Calls xPRBgetbounds

getLim

Synopsis
Return value

Description

Example

Related topics

double getLim();
Limit value (default 1):

This method returns the currently defined integer limit for a partial integer variable or
the lower semi-continuous limit for a semi-continuous or semi-continuous integer
variable.

See XPRBvar.getName.

Calls xPRERget 1im

getName

Synopsis

Return value

const char xgetName () ;

Name of the variable if executed successfully, NULL otherwise.

Description This method returns the name of a variable. If the user has not defined a name the
default name generated by BCL is returned.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 253

Example

Related topics

The following example displays information about a semi-continuous variable. The
output printed by this program extract is shown in the comment.

XPRBvar s;
XPRBprob prob ("myprob");

s = prob.newVar ("s", XPRB_SC, 0, 200);
s.setLim(10);

if (s.getType ()==XPRB_SC || s.getType ()==XPRB_STI)

{

cout << s.getName () << " in {" << s.getlLB() << "}+[";
cout << s.getLim() << "," << s.getUB() << "]" << endl;
} // s in {0}+[10,200]

Calls xPrREgetvarname

getRCost

Synopsis

Return value

Description

Example

Related topics

double getRCost () ;
Reduced cost value for the variable, 0 in case of an error.

This method returns the reduced cost value for a variable. The user may wish to test first
whether this variable is part of the problem, for instance by checking that the column
number is non-negative.

If this function is called after completion of a global search and an integer solution has
been found (that is, if function XxPRBprob.getMIPStat returns values
XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value in the best integer
solution. If no integer solution is available after a global search this function outputs a
warning and returns 0. In all other cases it returns the reduced cost value in the last LP
that has been solved. If this function is used during the execution of an optimization
process (for instance in Optimizer library callback functions) it needs to be preceded by a
call to xPrRBprob. sync with the flag XPRB_XPRS_SOL.

See XPRBvar.getSol.

Calls xPRERgetrcost

getRNG
Synopsis
double getRNG (int rngtype);
Argument rngtype The type of ranging information sought. This is one of:
XPRB_UPACT upper activity;
XPRB_LOACT lower activity;
XPRB_UUP upper unit cost;
XPRB_UDN lower unit cost
XPRB_UCOST upper cost;
XPRB_LCOST lower cost.
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 254

Return value

Description

Example

Related topics

Ranging information of the required type.

This method can only be used after solving an LP problem. Ranging information for MIP
problems can be obtained by fixing all discrete variables to their solution values and
re-solving the resulting LP problem.

This example retrieves ranging information (lower and upper activity) for a variable.

XPRBvar x;
XPRBprob prob ("myprob");

X = prob.newVar ("x", XPRB_PL, 0, 200);

// Define and solve an LP problem

cout << "x: " << x.getSol();
cout << " (act. range: " << x.getRNG (XPRB_LOACT) << ", " ;
cout << x.getRNG (XPRB_UPACT) << ")" << endl;

Calls xPRBgetvarrng

getSol

Synopsis

Return value

double getSol();

Primal solution value for the variable, 0 in case of an error.

Description This function returns the current solution value for a variable. The user may wish to test
first whether this variable is part of the problem, for instance by checking that the
column number is non-negative.

If this function is called after completion of a global search and an integer solution has
been found (that is, if function XPRBprob.getMIPStat returns values
XPRB_MIP_SOLUTION or XPRB_MIP_OPTIMAL), it returns the value of the best integer
solution. If no integer solution is available after a global search this function outputs a
warning and returns 0. In all other cases it returns the solution value in the last LP that
has been solved. If this function is used during the execution of an optimization process
(for instance in Optimizer library callback functions) it needs to be preceded by a call to
XPRBprob.sync with the flag XPRB_XPRS_SOL.

Example This example retrieves the solution information for the variable x after solving an LP

problem.
XPRBprob prob ("myprob");
XPRBvar x;
x = prob.newVar ("x", XPRB_PL, 0, 200);
prob.solve ("1");
if (x.getColNum() >= 0 && prob.getLPStat ()==XPRB_LP_OPTIMAL)
{
cout << x.getName () << ": solution: " << x.getSol();
cout << " reduced cost: " << x.getRCost () << endl;
}
else
cout << "No solution information available." << endl;
BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 255

Related topics

Calls xPRBRgetsol

getlype

Synopsis

Return value

Description
Example

Related topics

int getType();

XPRB_PL continuous;

XPRB_BV binary;

XPRB_UI general integer;
XPRB_PI partial integer;

XPRB_SC semi-continuous;
XPRB_SI semi-continuous integer;
-1 an error has occurred.

If the function exits successfully, the variable type is returned.
See XPRBvar.getName.

Calls xPREBgetvartype

getUB

Synopsis

Return value
Description
Example

Related topics

double getUB();

Upper bound on the variable (default XxPRB_INFINITY).

This method returns the currently defined upper bound on a variable.
See XPRBvar.getName.

Calls xPrREgetbounds

isValid

Synopsis

Return value

bool isValid();

true if object is valid, false otherwise.

Description This method checks whether the variable object is correctly defined. It should always be
used to test the result returned by xPRBprob.getvVarByName.

Example See XPRBprob.getVarByName.

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 256

print

Synopsis
int print();
Return value The number of characters printed.
Description This method prints out a variable. It is not available in the student version.
Example See XPRBprob.getVarByName

Related topics Calls xPREBprintvar

setDir
Synopsis
int setDir (int type, double wval);
int setDir (int type);
Arguments type Directive type, which must be one of:
XPRB_PR priority;
XPRB_UP first branch upwards;
XPRB_DN first branch downwards;
XPRB_PU pseudo cost on branching upwards;
XPRB_PD pseudo cost on branching downwards.
val An argument dependent on the type of directive to be defined. Must be one of:
XPRB_PR priority value — an integer between 1 (highest) and 1000 (least prior-
ity), the default;
XPRB_UP no input required;
XPRB_DN no input required;
XPRB_PU value of the pseudo cost on branching upwards;
XPRB_PD value of the pseudo cost on branching downwards.
Return value 0 if method executed successfully, 1 otherwise.

Description 1. This method sets any type of branching directive available in Xpress. This may be a priority
for branching on a variable (type xPRB_PR), the preferred branching direction (types
XPRB_UP, XPRB_DN) or the estimated cost incurred when branching on a variable (types
XPRB_PU, XPRB_PD). Several directives of different types may be set for a single variable.

2. Note that it is only possibly to set branching directives for discrete variables (including
semi-continuous and partial integer variables). Method xPrREsos.setDir may be used
to set a directive for a SOS.

Example See XPRBprob.clearDir.

Related topics Calls xPRBsetvardir

BCL in C++ (©20009 Fair Isaac Corporation. All rights reserved. page 257

setlLB

Synopsis

Argument
Return value

Description

Related topics

int setLB(double val);
val The variable’s new lower bound.
0 if method executed successfully, 1 otherwise.

This method sets the lower bound on a variable. If the problem is loaded in the
Optimizer, the bound change is passed on immediately without any need to reload the
problem.

Calls XxPRBset 1b

setLim
Synopsis

int setLim(double wval);
Argument val Value of the integer limit.

Return value

Description

Example

Related topics

0 if method executed successfully, 1 otherwise.

This method sets the integer limit (i.e. the lower bound of the continuous part) of a
partial integer variable or the semi-continuous limit of a semi-continuous or
semi-continuous integer variable to the given value.

See XPRBvar.getName, XPRBprob.newVar.

Calls XxPRBset1im

setType
Synopsis
int setType (int type);

Argument type The variable type, which is one of:
XPRB_PL continuous;
XPRB_BV binary;
XPRB_UI general integer;
XPRB_PI partial integer;
XPRB_SC semi-continuous;
XPRB_SI semi-continuous integer.

Return value
Description

Related topics

0 if method executed successfully, 1 otherwise.
This method changes the type of a variable that has been created previously.

Calls xPrREsetvartype

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved. page 258

setUB

Synopsis

Argument
Return value

Description

Related topics

int setUB(double wval);

val The variable’s new upper bound.

0 if method executed successfully, 1 otherwise.

This method sets the upper bound on a variable. If the problem is loaded in the

Optimizer, the bound change is passed on immediately without any need to reload the

problem.

Calls xPREBsetub

BCL in C++

(©20009 Fair Isaac Corporation. All rights reserved.

page 259

Chapter 6
BCL in Java

6.1 An overview of BCL in Java

Much as for the C++ interface, the Java interface of BCL provides the full functionality of the C
version except for the data input, output and error handling for which the standard Java system
functions can be used. The C modeling objects, such as variables, constraints and problems, are
again converted into classes, and their associated functions into methods of the corresponding
class in Java.

Whereas in C++ it is possible to use C functions, such as printf or xPRBprint £ for printing
output, all code in Java programs must be written in Java itself. In addition, in Java it is not
possible to overload the algebraic operators as has been done for the definition of constraints in
C++. Instead, the Java interface provides a set of simple methods like add or eql that have been
overloaded to accept various types and numbers of parameters.

The names for classes and methods in Java have been formed in the same way as those of their
counterparts in C++: All Java classes that have a direct correspondence with modeling objects in
BCL (namely XPRBprob, XPRBvar, XPRBctr, XPRBcut, XPRBsos, XPRBindexSet, XPRBbasis)
take the same names, with the exception of XxPRBindexSet. In the names of the methods the
prefix XPRB has been dropped, as have references to the type of the object. For example,
function xPrRBgetvarname is turned into the method getName of class XPRBvar.

All Java BCL classes are contained in the package com.dashoptimization. To use the (short)
class names, it is recommended to add the line

import com.dashoptimization.x;

at the beginning of every program that uses the Java classes of BCL.

The C++ classes and their methods documented in section 5.2 correspond to a large extend to the
classes defined by the Java interface, with some additional classes in the Java version. A
comprehensive documentation of the BCL Java interface is available as a separate ‘Java on-line
documentation’.

6.1.1 Example

An example of use of BCL in Java is the following, which again constructs the example described
in Chapter 2. Contrary to the C and C++ versions, BCL Java needs to be initialized explicitly by
creating an instance of xPRB.

import com.dashoptimization.x;

public class xbexpll

(©20009 Fair Isaac Corporation. All rights reserved. page 260

http://www.dashoptimization.com/secure/docs/bcl/dhtml/javadoc
http://www.dashoptimization.com/secure/docs/bcl/dhtml/javadoc

{

static final int NJ = 4; /+ Number of jobs x/
static final int NT 10; /* Time limit =*/

static final double[] DUR = {3,4,2,2}; /% Durations of jobs */

static XPRBvar[] start; /* Start times of jobs x/
static XPRBvar[][] delta; /+ Binaries for start times =*/
static XPRBvar z; /* Max. completion time */

static XPRB bcl;
static XPRBprob p;

static void jobsModel ()

{
XPRBexpr le;

int J, t;
start = new XPRBvar([NJ]; /+ Start time variables */
for (3=0; j<NJ; j++) start[j] = p.newVar ("start");

z = p.newVar ("z",XPRB.PL,0,NT); /* Makespan variable x*/

delta = new XPRBvar[NJ] [NT];

for (§=0; J<NJ; j++) /* Binaries for each job */
for (t=0; t<(NT-DUR[J]+1);t++)
delta[j][t] = p.newVar ("delta"+(j+1)+(t+1l), XPRB.BV);
for (3=0; j<NJ; j++) /* Calculate max. completion time x/

p.newCtr ("Makespan", start[j].add(DUR[J]).1lEgl(z));

p.newCtr ("Prec", start[0].add(DUR[O0]) .1Eqgl (start[2]));
/+ Precedence rel. between jobs x/

for (§=0; J<NJ; j++) /* Linking start times & binaries =/
{
le = new XPRBexpr();
for (t=0;t<(NT-DUR[J]+1);t++)
le.add(deltal[j] [t].mul ((t+1)));
p.newCtr ("Link_"+(Jj+1), le.eqgl(start[jl));
}

for (j=0; J<NJ; j++) /* Unique start time for each job x/
{

le = new XPRBexpr();

for (t=0;t<(NT-DUR[Jj]+1);t++) le.add(deltaljl[t]);

p.newCtr ("One_"+(3j+1), le.eqgl(l));

}

p.setObj(z); /* Define and set objective =/

for (j=0; j<NJ; j++) start[j].setUB(NT-DUR[F]+1);
/+ Upper bounds on "start" var.s =*/

static void jobsSolve ()

{
int Jj,t,statmip;

for (3=0; j<NJ; j++)
for (t=0; t<NT-DUR[J]+1;t++)
delta[j][t].setDir (XPRB.PR, 10x(t+1l));
/* Give highest priority to var.s for earlier start times =/

p.setSense (XPRB.MINIM) ;

p.solve ("g"); /* Solve the problem as MIP x/
statmip = p.getMIPStat (); /+ Get the MIP problem status =*/
if ((statmip == XPRB.MIP_SOLUTION) ||

(statmip == XPRB.MIP_OPTIMAL))

BCL in Java

(©20009 Fair Isaac Corporation. All rights reserved.

page 261

{ /* An integer solution has been found */

System.out.println("Objective: "+ p.getObjval());
/+ Print solution for all start times */
for (3=0; j<NJ; j++)
System.out.println(start[j].getName() + ": "+
start[j].getSol());
}
}

public static void main(String[] args)

{

bcl = new XPRB(); /+ Initialize BCL x/

p = bcl.newProb ("Jobs"); /+ Create a new problem */
jobsModel () ; /* Problem definition */
jobsSolve () ; /* Solve and print solution =/

}
}

The definition of SOS is similar to the definition of constraints.

static XPRBsos|[] set;
static XPRBprob p;

static void jobsModel ()
{

delta = new XPRBvar[NJ] [NT];

for (3=0; J<NJ; j++) /+ Variables for each job =/
for (t=0; t<(NT-DUR[J]+1);t++)
delta[j][t] = p.newVar ("delta"+(j+1)+(t+1l), XPRB.PL, 0, 1);

set = new XPRBsos[NJ];
for (3=0; J<NJ; j++) /+ SOS definition */
{
le = new XPRBexpr();
for (t=0; t< (NT-DUR[Jj]+1);t++)
le.add(deltal[j]l[t].mul ((t+1)));
set[J] = p.newSos("sosj", XPRB.S1l, le);
}
}

Branching directives for the SOSs are added as follows.

for (j=0; j<NJ; j++) set[]j].setDir (XPRB.DN) ;
/* First branch downwards on sets =/

Adding the following two lines during or after the problem definition will print the problem to
the standard output and export the matrix to a file respectively.

p.print () ; /* Print out the problem def. */
p.exportProb (XPRB.MPS, "expll");
/* Output matrix to MPS file «*/

Similarly to what has been shown for the problem formulation in C and C++, we may read data
from file and use index sets in the problem formulation. Only a few changes and additions to the
basic model formulation are required for the creation and use of index sets. However, if we want
to read in a data file in the format accepted by the C functions xPrREreadl ine and
XPRBreadarrline (thatis, using 'l as commentary sign, and ’,’ as separators, and skip blanks
and empty lines), we need to configure the data file access in Java.

In the following program listing we leave out the method jobsSolve because it remains
unchanged from the previous.

BCL in Java (©20009 Fair Isaac Corporation. All rights reserved. page 262

import java.io.x;
import com.dashoptimization.x;

public class xbexplli

{

static final int MAXNJ = 4;
static final int NT = 10;

static int NJ = 0;
static final double[] DUR;

static XPRBindexSet Jobs;
static XPRBvar[] start;
static XPRBvar|[][] delta;
static XPRBvar z;

static XPRB bcl;
static XPRBprob p;

/ *
/ *

/ *
/%

/%
/ *
/%
/ *

Max. number of jobs */
Time limit x/

Number of jobs read in x/
Durations of jobs =*/

Job names */

Start times of jobs */
Binaries for start times =*/
Max. completion time «/

/**xx Initialize the stream tokenizer *xxx/
static StreamTokenizer initST (FileReader file)

{

StreamTokenizer st=null;

st= new StreamTokenizer (file);
st.commentChar (' !");
st.eolIsSignificant (true);
st.ordinaryChar(’,’);
st.parseNumbers () ;

return st;

/%
/ *
/
/ *

/+x*+*x Read data from files **x*/
static void readData () throws IOException

{

FileReader datafile=null;
StreamTokenizer st;

int 1i;

Jobs = p.newIndexSet ("Jobs", MAXNJ) ;

DUR = new double[MAXNJ];

/ *

Use character ’!’ for comments x/
Return end-of-line character x/

Use ’,’ as separator =/

Read numbers as numbers (not strings)*/

Create a new index set =/

datafile = new FileReader ("durations.dat");

st = initST (datafile);
do

do
{

st.nextToken () ;

} while(st.ttype==st.TT_EOL); /x Skip empty lines x/
if (st.ttype != st.TT_WORD) break;
i=Jobs.addElement (st.sval);
if (st.nextToken() != ',’) break;
if (st.nextToken () != st.TT_NUMBER) break;
DUR[1] = st.nval;
NJ+=1;
} while(st.nextToken () == st.TT_EOL && NJ<MAXNJ) ;

datafile.close();

System.out.println ("Number of jobs read:

}

static void jobsModel ()
{
XPRBexpr le;
int J,t;

start = new XPRBvar([NJ];
for (3=0; j<NJ; j++)

" + Jobs.getSize());

/* Start time variables with bounds x/

start[j] = p.newVar ("start",XPRB.PL,0,NT-DUR[]J]+1);

BCL in Java

(©20009 Fair Isaac Corporation. All rights reserved.

page 263

z = p.newVar ("z",XPRB.PL,0,NT); /% Makespan variable x/

delta = new XPRBvar [NJ] [NT];

for (§=0; J<NJ; j++) /* Binaries for each job */
for (t=0; t<(NT-DUR[J]+1);t++)
deltal[j][t] =
p.newVar ("delta"+Jobs.getIndexName (j)+"_"+ (t+1),
XPRB.BV) ;
for (3J=0; J<NJ; j++) /x Calculate max. completion time x/

p.newCtr ("Makespan", start[j].add(DUR[J]).1Egl(z));

p.newCtr ("Prec", start[0].add(DUR[O0]) .1Eqgl(start[2]));
/* Precedence rel. between jobs x/

for (3=0; J<NJ; j++) /* Linking start times & binaries x/
{
le = new XPRBexpr();
for (t=0; t<(NT-DUR[J]+1);t++)
le.add(deltal[j] [t] .mul ((t+1)));
p.newCtr ("Link_ "+ (j+1), le.eqgl(start[]j]));
}

for (§=0; J<NJ; j++) /* Unique start time for each job x/
{

le = new XPRBexpr();

for (t=0;t<(NT-DUR[Jj]+1);t++) le.add(deltaljl[t]);

p.newCtr ("One_"+ (j+1), le.eql(l));

}

p.setObj(z); /+ Define and set objective x/
}

public static void main(String[] args)

{

bcl = new XPRB(); /+ Initialize BCL =/

p = bcl.newProb ("Jobs"); /* Create a new problem =/
try

{

readData () ; /+ Data input from file */

}
catch (IOException e)
{
System.err.println(e.getMessage()) ;
System.exit (1);
}
jobsModel () ; /* Problem definition */
jobsSolve () ; /* Solve and print solution =*/
}
}

6.1.2 QCQP Example

The following is an implementation with BCL Java of the QCQP example described in Section

3.4.1:

import java.io.x;
import com.dashoptimization.x;

public class xbairport
{
static final int N = 42;

/* Initialize the data tables:
static final double CX[] =
static final double CY[] =
static final double R[] =

x/

BCL in Java

(©20009 Fair Isaac Corporation. All rights reserved.

page 264

public static void main (Stringl[]

{

XPRB bcl;
XPRBprob prob;
int 1, 3;
XPRBvar([] x,vy;
XPRBexpr ge;
XPRBctr cobj, c;

bcl = new XPRB();

prob = bcl.newProb ("airport");

/*%%% VARIABLES *x*x*/
x = new XPRBvar|[N];
for (1=0;i<N; i++)

args) throws IOException

/x x—/y—-coordinates to determine =/

/* Initialize BCL =*/

/+ Create a new problem in BCL x/

x[1] = prob.newVar("x(" + (i+1) + ")", XPRB.PL, -10, 10);

y = new XPRBvar|[N];

for (1=0; i<N; i++)

y[i] = prob.newVar("y(" + (i+1) + ")", XPRB.PL, -10, 10);
/%% x*OBJECTIVE***x/

/* Minimize the total distance between all points =/

ge = new XPRBexpr();
for (i=0;i<N-1; i++)

for (j=1i+1; j<N; j++) ge .add((x[i].add(x[]J].mul(-1))).sqr())

.add ((y[i].add(y[7]]
cobj = prob.newCtr ("TotDist",

prob.setObj(cobj);

/*%xx CONSTRAINTS **xx/

/* All points within given distance of their target location =/

for (1i=0;i<N; i++)
c = prob.newCtr ("LimDist",

/*%%%*SOLVING + OUTPUT*#xx/
prob.setSense (XPRB.MINIM) ;
prob.solve("");

System.out.println("Solution:

for (1i=0; i<N; i++)

qe) ;
/* Set objective function =/

(x[1].add (-CX[1]1)) .sqr ()
.add((y[i].add(-CY[i])) .sqr())

/* Sense of optimization */

/* Solve the problem =/

" + prob.getObjval());

System.out.println(x[i].getName() + ": " + x[i].getSol() +

.mul (-1))).sqr());

.1Eql(R[i])

6.1.3 Error handling

", " + y[i] .getName ()

+ ": " 4 y[i].getSol());

If an error occurs, BCL Java raises exceptions. A large majority of these execeptions are of class
XPRBerror, during initialization of class xPRBlicenseError, and if file access is involved (such
as in method exportProb) of class IOException. For simplicity’s sake most of the Java program
examples in this manual omit the error handling. Below we show a Java implementation of the
example of user error handling with BCL from Section 3.5. Other features demonstrated by this

example include

¢ redirection of the BCL output stream for the whole program and for an individual problem;

e setting the BCL message printing level;

e forcing garbage collection for a problem.

import Jjava.io.x;
import com.dashoptimization.x;

public class xbexpl3
{

BCL in Java

(©20009 Fair Isaac Corporation. All rights reserved.

page 265

static XPRB bcl;
/***/

public static void modexpl3 (XPRBprob prob) throws XPRBerror
{

XPRBvar([] x;

XPRBexpr cobj;

int 1i;
x = new XPRBvar([3]; /* Create the variables */
for (i=0;1i<2;1i++) x[i] = prob.newVar("x_"+i, XPRB.UI, 0, 100);
/* Create the constraints:

Cl: 2x0 + 3x1 >= 41

C2: x0 + 2x1 = 13 x/
prob.newCtr ("C1", x[0].mul(2).add(x[1].mul(3)) .gEgl(41l));
prob.newCtr ("C2", x[0].add(x[1].mul(2)) .eqgl(13));

/* Uncomment the following line to cause an error in the model that
triggers the error handling: =/

// x[2] = prob.newVar ("x_2", XPRB.UI, 10, 1);
/* Objective: minimize x0+x1 x/

cobj = new XPRBexpr () ;
for (i=0;1<2;1i++) cobj.add(x[1i]);

prob.setObj (cobj); /* Select objective function */
prob.setSense (XPRB.MINIM) ; /+ Set objective sense to minimization =/
prob.print(); /+ Print current problem definition =/
prob.solve (""); /* Solve the LP */
System.out.println ("Problem status: " + prob.getProbStat () +

" LP status: " + prob.getLPStat () +

" MIP status: " + prob.getMIPStat());

/* This problem is infeasible, that means the following command will fail.
It prints a warning if the message level is at least 2 */

System.out.println("Objective: " + prob.getObjval());
for (i=0;i<2;i++) /+ Print solution values =/
System.out.print (x[i] .getName () + ":" + x[i].getSol() + ", ");

System.out.println();

/*‘k************‘k*************‘k************‘k*****************************/

public static void main(String[] args)
{

FileWriter f;

XPRBprob prob;

try
{
bcl = new XPRB(); /+ Initialize BCL =/
}
catch (XPRBlicenseError e)
{
System.err.println ("BCL error "+ e.getErrorCode() + ": " + e.getMessage());
System.exit (1);
}

bcl.setMsgLevel (2); /+ Set the printing flag. Try other values:
0 - no printed output,
2 - print warnings, 3 - all messages */
try
{
BCL in Java (©20009 Fair Isaac Corporation. All rights reserved. page 266

f=new FileWriter ("expl3out.txt");
bcl.setOutputStream(f); /+ Redirect all output from BCL to a file «/

prob = bcl.newProb ("Expl3"); /% Create a new problem x/

prob.setOutputStream() ; /* Output for this prob. on standard output =*/
modexpl3 (prob) ; /+ Formulate and solve the problem x/
prob.setOutputStream (f); /+ Redirect problem output to file x/
prob.print () ; /+ Write to the output file =/

f.close();

prob=null; /* Delete the problem «*/

System.gc () ; /+ Force garbage collection =/

System.runFinalization();

System.err.flush();

}
catch (IOException e)

{
System.err.println(e.getMessage());
System.exit (1);

}

catch (XPRBerror e)

{
System.err.println ("BCL error "+ e.getErrorCode() + ": " + e.getMessage());
System.exit (1);
}
}
}

6.2 Java class reference

The complete set of classes of the BCL Java interface is summarized in the following list. For a
detailed documentation of the Java interface the reader is referred to the BCL Javadoc that is
part of the Xpress distribution.

XPRB Initialization and general settings, definition of all parameters.

XPRBprob Problem definition, including methods for creating and deleting the
modeling objects, problem solving, changing settings, and retrieving
solution information.

XPRBvar Methods for modifying and accessing variables.

XPRBctr Methods for constructing, modifying and accessing constraints.

XPRBcut Methods for constructing, modifying and accessing cuts.

XPRBsos Methods for constructing, modifying and accessing Special Ordered
Sets.

XPRBindexSet Methods for constructing and accessing index sets and accessing set
elements.

XPRBbasis Methods for accessing bases.

XPRBexpr Methods for constructing linear and quadratic expressions.

XPRBrelation Methods for constructing linear or quadratic relations from expressions

(extends XPRBexpr).

XPRBerror Exception raised by BCL errors (extends Error).

BCL in Java (©20009 Fair Isaac Corporation. All rights reserved. page 267

XPRBlicenseError Exception raised by BCL licensing errors (extends XPRBerror).

XPRBlicense For OEM licensing.

All Java classes that have a direct correspondence with modeling objects in BCL (namely
XPRBprob, XPRBvar, XPRBctr, XPRBcut, XPRBsos, XPRBindexSet, XPRBbasis) take the same
names, with the exception of xPRBindexSet. It is possible to obtain the Xpress-Optimizer
problem corresponding to a BCL Java problem by using method getXPRSprob of class XxPRBprob,
please see Section B.7 for further detail on using BCL with the Optimizer library.

Most of the methods of the classes with direct correspondence with C modeling objects call
standard BCL C functions and return their result. Where the C functions return 0 or 1 to indicate
success or failure of the execution of a function the Java methods have return type void, raising
an exception if an error occurs.

An important class that does not correspond to any standard BCL modeling object is class XPRB
that contains methods relating to the initialization and the general status of the software and
also the definition of all parameters. This means, any parameter with the prefix XPRB_ in
standard BCL is referred to as a constant of the Java class XPRB. For example, XPRB_BV in
standard BCL becomes XPRB.BV in Java.

In Java, it is not possible to overload operators as this is the case in the C++ interface; instead, a
set of simple methods is provided, for example, add or eql that have been overloaded to accept
various types and numbers of parameters. Some additional classes have been introduced to aid
the termwise definition of constraints. Linear and quadratic expressions (class XPRBexpr) are
required in the definition of constraints and Special Ordered Sets. Linear or quadratic relations
(class XPRBrelation), may be used as an intermediary in the definition of constraints.

A few other additional classes are related to error handling and licensing, namely xPRBerror,
XPRBlicense, and XPRBlicenseError (overloads XPRBerror). License errors are raised by the
initialization of BCL, all other BCL errors are handled by exceptions of the type xPRBerror.
Output functions involving file access (in particular matrix output with exportProb) may also
generate exceptions of type 10Exception. The class xPRBlicense only serves for OEM
licensing; for further detail please see the Xpress OEM licensing documentation.

BCL in Java

(©20009 Fair Isaac Corporation. All rights reserved. page 268

Appendix

Appendix A

BCL error messages

There are two types of error messages displayed by BCL. Those marked ‘E’ (for Error) in the
following list stop the execution of the program. Those marked ‘W’ (for Warning) do not
interrupt the program. The marker ‘fct’ indicates that the name of the function where the error
occurred will be printed out.

E-1502

E-1504

E-1505

E-1506

E-1507

E-1508

E-1509

E-1510

E-1512

Not enough memory.
It is not possible to allocate the required amount of memory needed for BCL objects.

Dictionary cannot be re-initialized.
Dictionary sizes can only be set immediately after the creation of a problem.

(fct) No variable given.
Function fct requires a variable of type XxPRBvar as an input parameter. Check
whether the variable has been created (functions XxPRBnewvar or XPRBnewarrvar).

(fct) No array of variables given.
Function fct requires an array of variables of type XPRBarrvar as an input parameter.
Check whether the array has been created (function xPrREnewarrvar or alternatively
functions xPRBstartarrvar and XPREonda‘:rvar).

(fct) No constraint given.
Function fct requires a constraint of type XPRBctr as an input parameter. Check
whether the constraint has been created (functions XxPRBnewct r, XPRBnewsum,
XPRBnewarrsum, Or XPRBTLefIJpz*ec).

(fct) No SOS given.
Function fct requires a SOS of type XPRBsos as an input parameter. Check whether
the set has been created (functions xPRBnewsos, XPRBnewsosrc, Of XPRBnewsosw).

(fct) No cut given.
Function fct requires a cut of type xPRBcut as an input parameter. Check whether the
cut has been created (functions XPRBnewcut, XPRBnewcutsum, XPRBnewcutarrsum,
or XPRBncwcutproc).

(fct) No basis given.
Function fct requires a basis of type XxPRBbasis as an input parameter. Check whether
the basisi has been saved (function xPRBsavebasis).

(fct) No array of constants given.
Function fct requires an array of constants as an input parameter.

W-1513 (fct) No variable given.

Function fct requires a variable of type xPRBvar as an input parameter. The command
is being ignored.

(©20009 Fair Isaac Corporation. All rights reserved. page 270

W-1514 (fct) No constraint given.

E-1515

W-1516

W-1518

W-1519

W-1520

E-1521

E-1522

E-1523

E-1524

W-1525

E-1526

W-1527

E-1530

E-1531

Function fct requires a constraint of type XPRBctr as an input parameter. The
command is being ignored.

(fct) Problem has no ‘name’.
The problem definition is incomplete (at least one variable and one constraint or one
non-zero objective coefficient must be defined).

(fct) Problem has no ‘name’.
The problem definition may be incomplete (at least one variable and one constraint or
one non-zero objective coefficient must be defined).

(fct) No SOS given.
Function fct requires a Special Ordered Set of type xPRBsos as an input parameter.
The command is being ignored.

(fct) No cut given.
Function fct requires a cut of type XPRBcut as an input parameter. The command is
being ignored.

(fct) No solution available or problem modified since last solved.
Function fct is trying to access solution information which is not available for the
current problem.

Xpress-Optimizer error getting objective function value.
The objective function value cannot be obtained from Xpress-Optimizer.

Xpress-Optimizer error getting ‘name’ status.
Xpress-Optimizer solution status information cannot be obtained.

Unknown solution option “char’.
Possible options for xPrREsolve include 'b’, 7d’, "g’, "1’, "p’. Refer to the
reference manual for details.

(fct) Xpress-Optimizer error num during ‘name’. Return value: val.
An Xpress-Optimizer error has occurred while executing the Optimizer function name.
Refer to the Optimizer Reference Manual for details on the error number num and
return value val.

(fct) Different problem loaded in Xpress-Optimizer.
(Solution) information is being sought from the Xpress-Optimizer on a problem that is
not the active problem in Xpress-Optimizer. It may be necessary to (re)solve the
problem to access this information, or at least, reload the matrix.

(fct) Empty problem or problem not loaded in Xpress-Optimizer.
(Solution) information is being sought on a problem that has not yet been loaded into
Xpress-Optimizer. It may be necessary to solve the problem to access this information,
or at least, load the matrix into Xpress-Optimizer.

Loading MIP solution failed. Return value: val.
The specified MIP solution has not been loaded into BCL. Please see the
documentation of function xPRE1oadmipsol for an explanation of the return values.

(fct) Inconsistent bounds for variable ‘name’ (bdl,bdu).
The lower bound is greater than the upper bound for the given variable.

(fct) Incorrect type for variable ‘name’.
No type, or an incorrect type, has been specified for a variable. See the list of possible
values in the reference manual (function xPREsetvartype).

BCL error messages

(©20009 Fair Isaac Corporation. All rights reserved. page 271

E-1535

E-1536

E-1538

E-1539

E-1540

E-1541

E-1542

E-1543

E-1545

E-1546

E-1547

E-1550

W-1551

W-1552

W-1555

(fct) Incorrect type for constraint ‘'name’.
No type, or an incorrect type, has been specified for a constraint. See the list of
possible values in the reference manual (function xPREsetct rtype).

(fct) Inconsistent range for constraint ‘name’ (bdl,bdu).
The lower range bound is greater than the upper bound for the given constraint.

(fct) Setting ‘descr’ can only be applied to standard constraints.
‘Model cut’, ‘delayed constraint’, and ‘indicator constraint’ are mutually exclusive
flags. A constraint for which one of these flags is set cannot be turned into one of the
other types without previously resetting the corresponding flag (using the
appropriate function XxPREsetmodcut, XPRBsetdelayed, Of XPRBsetindicator
with argument value 0).

(fct) Incorrect constraint type for indicator constraint ‘'name’.
Indicator constraints must be inequalities or range constraints.

(fct) Trying to modify a closed array of variables (‘name’).
It is not possible to make changes to an array of variables after its definition has been
terminated with xPrRBendarrvar.

(fct) Index num1 out of range for an array of variables (‘name’ max = num2).
Trying to store too many elements in an array of variables or addressing an index
beyond its size.

(fct) Trying to add an entry (‘name’) to a complete array of variables (‘'name’).
If the number of elements of the array of variables corresponds to its size, it is not
possible to add any further variables.

(fct) Trying to close an incomplete array of variables (‘'name’).
Not all elements of an array of variables that is being closed with xPrREendarrvar
have been defined.

(fct) Wrong type for SOS ‘name’.
No type, or an incorrect type, has been specified for a SOS. See the list of possible
values in the reference manual (function xPRBRgetsostype).

(fct) Name too long (max = num ‘name’).
A user-defined name exceeds the maximum length (see documentation of function
XPRRmevmame).

(fct) Wrong directive type.
No type, or an incorrect type, has been specified for a directive. See the list of possible
values in the reference manual (functions xPrRBsetvardir or XxPRBsetsosdir).

(fct) No index set given.
Function fct requires an index set of type XxPRBidxset as an input parameter. Check
whether the index set has been created (function XxPRBnewidxset).

(fct) No name given for an element of an index set.
Function fct requires an index name as input parameter. The command is being
ignored.

(fct) No index set given.
Function fct requires an index set of type xPRBidxset as an input parameter. The
command is being ignored.

Incorrect IS index given (num).
The specified index value num does not correspond to an IIS set (IIS set indices are
positive numbers). The command is being ignored.

BCL error messages

(©20009 Fair Isaac Corporation. All rights reserved. page 272

E-1560 No Xpress-BCL license found. Please contact Xpress Support to obtain a license
No valid BCL license has been found. If you did install a license, check whether you
have copied it to the right place and that all environment variables and paths for BCL
and the Xpress-Optimizer are set correctly.

E-1561 (fct) Initialization failed (value: num).
Xpress-Optimizer could not be initialized (error code num).

W-1562 (fct) Working with Student License.
BCL is running in Student mode; this mode implies restrictions to the available
functionality and to the accepted problem size.

E-1563 (fct) Inconsistency during matrix generation.
Internal error during the matrix generation.

E-1565 (fct) Internal error.
Internal error during the matrix generation.

E-1566 Name too long: ‘name’.
A user-defined or BCL composed name exceeds the maximum length. (Remember that
BCL adds indices to names if they already exist.)

E-1567 (fct) Size limits of the Student License exceeded.
The specified model is too large to be run with the Student License.

W-1568 Operation fct not allowed in Student License.
You are not authorized to execute function fct with the Student License of BCL.

W-1570 XPRS: text
Refer to the Optimizer Reference Manual for the indicated error.

E-1571 text
The initialization has not found a valid license.

E-1575 (fct) Unexpected argument value val.
The value val lies outside the accepted range of values for the indicated function.

W-1580 Unknown output file format format.
Refer to the documentation of function xPrREexportprob for admissible output
format options.

E-1582 Internal error writing MPS file.
Please contact Xpress Support.

W-1587 Switch to cut mode.
The cut mode probably needs to be enabled (function xPrREset cutmode) before this
function is called.

E-1591 (fct) Non-quadratic term.
A term of the objective function has a power higher than 2.

BCL error messages (©20009 Fair Isaac Corporation. All rights reserved. page 273

Appendix B
Using BCL with the Optimizer library

BCL provides both modeling and basic optimization functions, which correspond to the
functionality of Xpress-Mosel, or of the Xpress-Modeler and the functions of the
Xpress-Optimizer library in ‘Console Mode’, respectively. However, if the user wishes to access the
more advanced features of the Optimizer, obtain additional information, or change algorithm
settings, the relevant Optimizer library functions have to be used directly.

The following sections explain in more detail how to use Optimizer library functions within a BCL
program. The first section lists those functions which are compatible with BCL. It is followed by
some general remarks about initialization, loading the matrix and the use of indices. The last
section contains some typical examples for the use of BCL-compatible Optimizer functions in BCL
programs.

Important: If a program uses Optimizer library functions the Optimizer header file has to be
included in addition to the BCL header file. That is, the first lines of the program should contain
the following:

#include "xprb.h"
#include "xprs.h"

B.1 Switching between libraries

Generally speaking, there are two types of Optimizer library functions: those that access
information about a problem or change settings for the search algorithms, and those that make
changes to the problem definition. The first group of functions may be used in a BCL program
without any problem. The second group requires the user to switch completely to the Optimizer
library, for instance after a problem has been defined in BCL and the matrix has been loaded into
the Optimizer.

B.1.1 BCL-compatible Optimizer functions

The following Optimizer library functions may be used with BCL (however, some caution is
required with all functions that take column or row indices as input parameters, see Section B.4
below. Furthermore, the solution information in BCL is only updated automatically at the end of
the search, in the global callbacks—not for parallelized MIP—it needs to be updated by calling
¥PRBsync with the parameter XPRB_XPRS_SOL):

e setting and accessing problem and control parameters: functions XPRSsetintcontrol,
XPRSgetintcontrol, XPRSgetintattrib etc,;

(©20009 Fair Isaac Corporation. All rights reserved. page 274

e output and saving: functions xPRSsave, XPRSwritebasis, XPRSrange, XPRSiis,
XPRSwriteprtsol, XPRSwritesol, XPRSwriteprtrange, XPRSwriterange,
XPRSgetlpsol, XPRSgetmipsol,XPRSwriteomni, XPRSwriteprob, all logging and
solution callbacks with the exception of XxPRSsetcbmessage that is used by BCL and must
not be re-defined by the user;

e accessing information: all functions xPRSget...,;

e settings for algorithms: xPRSreaddirs, XPRSloaddirs, XPRSreadbasis, XPRSloadbasis,
XPRSloadsecurevecs, XPRSscale, XPRSftran, XPRSbtran, all global callbacks;

e cut manager.

B.1.2 Incompatible Optimizer functions

The following Optimizer library functions may be used only after or in place of BCL:

e changing, adding, and deleting matrix elements: all functions xPRSadd..., XPRSchg...,
XPRSdel...;

e solution algorithms: XxPRSminim, XPRSmaxim, XPRSglobal;

e input of data or problem(s): xPRSreadprob, XPRSloadlp, XPRSloadglobal,
XPRSloadgglobal, XPRSloadgp, XPRSalter, XPRSsetprobname,

e manipulation of the matrix: XPRSrestore;

Once any of the functions in the preceding list have been called for a given problem, the
information held in BCL may be different from the problem in the Optimizer and it is not possible
to update BCL accordingly. The program must therefore continue using only Optimizer library
functions on that problem, that is, switch completely to the Optimizer library. The ‘switching’
from BCL to the Optimizer library always refers to a single problem. If other problems are being
worked on in parallel, for which none of the above incompatible function have been called, users
can continue to work with them using BCL functions.

B.2 Initialization and termination

The Optimizer library is initialized at the same time as BCL and so there is no need to call the
Optimizer library initialization function, xPrRSinit, from a user program. In standard use of BCL
the function xPrEnewprob calls the BCL initialization function xPrBinit that automatically
initializes the Optimizer if this is the first call to xPrREinit. In very large applications or
integration with other systems it may be preferrable to call xPrBinit explicitly to separate the
initialization from the definition of the problem(s).

At the end of the program, the normal BCL termination routine should be applied, first releasing
any memory associated to problems using xPrEdelprob and subsequently calling xPREfree to
tidy up. These routines also free memory associated with the Optimizer library and hence neither
of the XPRSdestroyprob or XxPRSfree functions must be used. However, if one wishes to
continue working with the Optimizer after terminating BCL, the Optimizer needs to be initialized
(possibly before initializing BCL) and terminated separately.

Thus, the standard use of BCL is as follows:
XPRBprob prob;

prob = XPRBnewprob ("Examplel");
/+ Define and solve the problem x/

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 275

Integration of a BCL problem into some larger application:

XPRBprob prob;
XPRBinit ("");

A /* Perform other initialization tasks x/
prob = XPRBnewprob ("Examplel");
. /* Define and solve the problem =/
XPRBdelprob (prob) ;
XPRBfree () ;

B.3 Loading the matrix

BCL loads the matrix into the Optimizer library whenever (through BCL) an action is required
from the Optimizer and the matrix in the Optimizer does not correspond to the one in BCL. This
means, if a user wishes to switch to using Optimizer library commands, for instance for
performing the optimization, he should explicitly load the current BCL problem into the
Optimizer (function XPRB1oadmat).

Since both BCL and the Optimizer require separate problem pointers to specify the problem
being worked on, there is an issue about how to obtain the Optimizer problem pointer referring
to a problem just loaded by BCL. Such issues are handled using the function xPrRBget XPRSprob,
which returns the required Optimizer pointer. It should be noted that no call to
XPRScreateprob is necessary in this instance, as the problem is created by BCL at the point that
it is first passed to the Optimizer.

Standard use of BCL:

XPRBarrvar Xx;

x = XPRBnewarrvar (prob, 10, XPRB_PL, "x", 0, 100);
. /+ (Define the rest of the problem) =/
XPRBmaxim (prob,""); /* Load matrix and maximize LP problem =/

for (i=0; 1i<10; i++) /* Print solution values for variables */
printf ("$s: %d, ",XPRBgetvarname (prob,x[1]),

XPRBgetsol (prob, x[1]));

Switch to using the Optimizer library after problem input with BCL:

XPRBprob bcl_prob;
XPRSprob opt_prob;
XPRBarrvar x;

int i, cols, len, offset;
double xsol;

char xnames;

bcl_prob = XPRBnewprob ("Examplel"); /* Initialize BCL (and the Optimizer
library) and create a new problem x/
x = XPRBnewarrvar (bcl_prob, 10, XPRB_PL, "x", 0, 100);

c.. /* Define the rest of the problem x/
XPRBloadmat (bcl_prob) ; /+ Load matrix into the Optimizer =/
opt_prob = XPRBgetXPRSprob (bcl_prob) ;

/* Get the Optimizer problem */
XPRSmaxim (opt_prob,""); /* Maximize the LP problem =*/
XPRSgetintattrib (opt_prob, XPRS_ORIGINALCOLS, &cols);

/* Get the number of columns */
sol = malloc(cols % sizeof (double));
XPRSgetlpsol (opt_prob, sol, NULL, NULL, NULL);

/* Get entire primal solution =/
XPRSgetnamelist (opt_prob, 2, NULL, 0, &len, 0, cols-1);

/* Get number of bytes required for

retrieving names =*/

names = (char *)malloc(lenxsizeof (char));

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 276

XPRSgetnamelist (opt_prob, 2, names, len, NULL, 0, ncol-1);
/* Get the variable names */

offset=0;
for (i=0; i<cols; 1i++) { /* Print all solution values */
printf ("%$s: %g, ", namestoffset, sol[i]);

offset += strlen(names+offset)+1;

}

B.4 Indices of matrix elements

The row and column indices that are returned by the BCL functions xPRBget rownum and
XPRBget colnum correspond to the position of variables and constraints in the unpresolved
matrix with empty rows or columns removed. The position of matrix elements may be modified
by the presolve/preprocessing algorithms. That means, if these algorithms are not switched off
(control parameters XPRS_PRESOLVE and XPRS_MIPPRESOLVE), the indices for variables and
constraints held by BCL should not be used with any Optimizer library functions. The same rule
applies to any other variable or constraint-specific information, such as solution and dual values.
This problem does not occur within BCL (that is, if only BCL functions are used) since the solution
information is accessible only after the optimization run has finished and the postsolve has been
performed by the Optimizer.

An exception from the rule stated above are the Optimizer library functions xPRSget 1psol /
XPRSgetmipsol: XPRSgetlpsol may be used, for instance, in Optimizer library callback
functions during the global search to access the current solution values, and in combination with
the indices for variables and constraints held by BCL. This is possible because xPRSget1psol /
XPRSgetmipsol return the postsolved solution (depending on the setting of the control
parameter XPRS_SOLUTIONFILE).

B.5 Using BCL-compatible functions

The Optimizer library functions that are most likely to be used in a BCL program are those for
setting and accessing control and problem parameters, as shown in the following examples. The
control parameters can be set and accessed at any time after the software has been initialized
(see Section B.2). The problem attributes only return the problem-specific values once the
problem has been loaded into the Optimizer. Note that all the parameters take their default
values at the beginning of a BCL program but they are not reset if several problems are solved in
a single program and changes are made to the parameter values along the way.

Setting control parameters:

XPRBprob bcl_prob;
XPRSprob opt_prob;

bcl_prob = XPRBnewprob ("Examplel"); /% Initialize BCL (and the Optimizer
library) and create a new problem =*/

. /* Define the problem «*/
XPRBloadmat (bcl_prob);
opt_prob = XPRBgetXPRSprob (bcl_prob);
XPRSsetintcontrol (opt_prob, XPRS_MAXTIME, 60);

/* Set a time limit of 60 seconds x/
XPRSsetdblcontrol (opt_prob, XPRS_MIPADDCUTOFF, 0.999);

/* Set an ADDCUTTOFF value */
XPRBmaxim (bcl_prob,""); /+ Load matrix and maximize LP problem =/

Accessing problem parameters:

int rows;

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 277

XPRBprob bcl_prob;
XPRSprob opt_prob;

bcl_prob = XPRBnewprob ("Examplel"); /% Initialize BCL (and the Optimizer
library) and create a new problem x/
. /* Define the problem =/
XPRBloadmat (bcl_prob) ; /* Load matrix into the Optimizer =/
opt_prob = XPRBgetXPRSprob (bcl_prob);
XPRSgetintattrib (opt_prob, XPRS_ORIGINALROWS, &rows);
/* Get number of rows =*/
XPRBmaxim (bcl_prob,""); /+ Maximize the LP problem */

Another likely set of functions are the Optimizer library callbacks for solution printout and
possibly for directing the branch and bound search (see the remarks about indices in Section B.4):

void XPRS_CC printsol (XPRSprob opt_prob,void *my_object)
{

XPRBprob bcl_prob

XPRBvar x;

int num;

bcl_prob = (XPRBprob)my_object;
XPRSgetintattrib (opt_prob, XPRS_MIPSOLS, &num);
/* Get number of the solution */
XPRBsync (bcl_prob, XPRB_XPRS_SOL);
/* Update BCL solution values x/
XPRBprintf (bcl_prob, "Solution %d: Objective value: %g\n",
num, XPRBgetobjval (bcl_prob));
x = XPRBgetbyname (bcl_prob, "x_1", XPRB_VAR);
if (XPRBgetcolnum(x)>-1) /* Test whether variable is in the
matrix */
XPRBprintf (bcl_prob, "$s: %$g\n", XPRBgetvarname (x), XPRBgetsol (x));
}

int main(int argc, char xxargv)
{

XPRBprob bcl_prob;

XPRSprob opt_prob;

XPRBvar x;

bcl_prob = XPRBnewprob ("Examplel"); /x Initialize BCL (and the Optimizer
library) and create a new problem x/
x = XPRBnewvar (bcl_prob, XPRB_BV,"x_1",0,1); /+ Define a variable */
. /* Define the rest of the problem x/
opt_prob = (XPRSprob)XPRBgetXPRSprob (bcl_prob);
XPRSsetcbintsol (opt_prob, printsol, bcl_prob);
/* Define an integer solution callback =/
XPRBmaxim (bcl_prob, "g"); /* Maximize the MIP problem x*/

Note: The synchronization between BCL and the Optimizer during the MIP search can only be
used with standard, single-thread MIP. In the case of parallel MIP solving solution information can
only be accessed through the Optimizer library functions whereby it is possible to use the column
or row indices saved for BCL modeling objects as shown below.

void XPRS_CC printsol (XPRSprob opt_prob,void xmy_object)
{

int num, ncol;

XPRBprob bprob;

XPRBvar x;

double *sol, objval;

bprob = (XPRBprob)vp;
XPRSgetintattrib (oprob, XPRS_ORIGINALCOLS, &ncol);

/* Get the number of columns */
sol = (double x)malloc(ncol » sizeof (double));

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 278

/+ Create the solution array =*/

XPRSgetintattrib (oprob, XPRS_MIPSOLS, &num); /* Get number of the solution =/
XPRSgetlpsol (oprob, sol, NULL, NULL, NULL); /* Get the solution values =/
XPRSgetdblattrib (oprob, XPRS_LPOBJVAL, &obijval);
printf ("Solution %d: Objective value: %g\n", num, objval);
x = XPRBgetbyname (bprob, "x_1", XPRB_VAR);
if (XPRBgetcolnum(x)>-1)

printf ("%$s: %g\n", XPRBgetvarname (x), sol[XPRBgetcolnum(x)]);
free(sol);

B.6 Using the Optimizer with BCL C++

Everything that has been said above about the combination of BCL and Xpress-Optimizer

functions remains true if the BCL program is written in C++.

The examples of BCL-compatible Optimizer functions in the previous section become:

Setting and accessing parameters:

int rows;
XPRSprob opt_prob;
XPRBprob bcl_prob ("Examplel"); // Initialize BCL (and the Optimizer
// library) and create a new problem
. // Define the problem
bcl_prob.loadMat () ;
opt_prob = bcl_prob.getXPRSprob () ;
XPRSsetintcontrol (opt_prob, XPRS_MAXTIME, 60);

// Set a time limit of 60 seconds
XPRSsetdblcontrol (opt_prob, XPRS_MIPADDCUTOFF, 0.999);

// Set an ADDCUTTOFF value
XPRSgetintattrib (opt_prob, XPRS_ORIGINALROWS, &rows) ;

// Get number of rows
bcl_prob.maxim(""); // Maximize the LP problem

Using Xpress-Optimizer callbacks (non-parallel MIP):

void XPRS_CC printsol (XPRSprob opt_prob,void *my_object)
{

XPRBprob *bcl_prob

XPRBvar x;

int num;

bcl_prob = (XPRBprobx)my_object;
XPRSgetintattrib (opt_prob, XPRS_MIPSOLS, &num);

// Get number of the solution
bcl_prob->sync (XPRB_XPRS_SOL) ;

// Update BCL solution values
cout << "Solution " << num << ": Objective value: ";
cout << bprob->getObjval() << endl;

x = bcl_prob->getVarByName ("x_1");

if(x.getColNum()>-1) // Test whether variable is in the
// matrix
cout << x.getName () << ": " << x.getSol() << endl;

}

int main(int argc, char xxargv)
{

XPRBprob bcl_prob;

XPRSprob opt_prob;

XPRBvar x;

bcl_prob = XPRBnewprob ("Examplel"); // Initialize BCL (and the Optimizer
// library) and create a new problem
x = bcl_prob.newVar ("x_1", XPRB_BV); // Define a variable

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved.

page 279

... // Define the rest of the problem
opt_prob = bcl_prob.getXPRSprob();
XPRSsetcbintsol (opt_prob, printsol, &bcl_prob);
// Define an integer solution callback
bcl_prob.maxim("g"); // Maximize the MIP problem
}

Note: The synchronization between BCL and the Optimizer during the MIP search can only be
used with standard, single-thread MIP. In the case of parallel MIP solving solution information can
only be accessed through the Optimizer library functions whereby it is possible to use the column
or row indices saved for BCL modeling objects as shown below.

void XPRS_CC printsol (XPRSprob opt_prob,void xmy_object)
{

XPRBprob *bcl_prob

XPRBvar x;

int num, ncol;

double *sol, objval;

bcl_prob = (XPRBprobx)my_object;
XPRSgetintattrib (opt_prob, XPRS_ORIGINALCOLS, &ncol);

// Get the number of columns
sol = new double[ncol]; // Create the solution array
XPRSgetintattrib (opt_prob, XPRS_MIPSOLS, &num);

// Get number of the solution

XPRSgetlpsol (opt_prob, sol, NULL, NULL, NULL); // Get the solution
XPRSgetdblattrib (opt_prob, XPRS_LPOBJVAL, &objval);
cout << "Solution " << num << ": Objective value: " << objval << endl;
x = bcl_prob->getVarByName ("x_1");
if(x.getColNum()>-1) // Test whether variable is in the
// matrix

cout << x.getName() << ": " << sol[x.getColNum()] << endl;

delete [] sol;

As in the C case, it is possible within a BCL program written in C++ to switch entirely to
Xpress-Optimizer (see Section B.3).

B.7 Using the Optimizer with BCL Java

Starting with Release 3.0 of BCL it is possible to combine BCL Java problem definition with direct
access to the Optimizer problem in Java. All that is said in the previous sections about

BCL-compatible functions remains true. The only noticeable difference is that the Optimizer Java
needs to be initialized explicitly (by calling xPRsinit) before the Optimizer problem is accessed.

The following are Java implementations of the code extracts showing the use of BCL-compatible
functions:

Setting and accessing parameters (this code throws the exceptions xPRSprobException and
XPRSexception):

int rows;
XPRB bcl;
XPRSprob opt_prob;
XPRBprob bcl_prob;

bcl = new XPRB(); /x Initialize BCL */
bcl_prob = bcl.newProb ("Examplel"); /+ Create a new problem in BCL x/
XPRS.init () ; /* Initialize Xpress-Optimizer =*/

. /* Define the problem «*/
bcl_prob.loadMat () ;
opt_prob = bcl_prob.getXPRSprob();

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 280

opt_prob.setIntControl (XPRS.MAXTIME, 60);

/* Set a time limit of 60 seconds x/
opt_prob.setDblControl (XPRS.MIPADDCUTOFF, 0.999);

/+ Set an ADDCUTTOFF value */
rows = opt_prob.getIntAttrib (XPRS.ORIGINALROWS) ;

/* Get number of rows =*/
bcl_prob.maxim(""); /* Maximize the LP problem */

Using Xpress-Optimizer callbacks (non-parallel MIP):

static class IntSolCallback implements XPRSintSolListener
{
public void XPRSintSolEvent (XPRSprob opt_prob, Object my_object)
{
XPRBprob bcl_prob
XPRBvar x;
int num;

bcl_prob = (XPRBprob)my_object;
try {
num = opt_prob.getIntAttrib (XPRS.MIPSOLS) ;
/* Get number of the solution =/
bcl_prob.sync (XPRB.XPRS_SOL) ;
/+ Update BCL solution values x/
System.out.println("Solution " + num + ": Objective value: " +
bcl_prob.getObjval());
x = bcl_prob.getVarByName ("x_1");

if (x.getColNum()>-1) /* Test whether variable is in the
matrix /
System.out.println(x.getName () + ": " + x.getSol());

}
catch (XPRSprobException e) {
System.out.println ("Error " + e.getCode() + ": " + e.getMessage());

}
}

public static void main(String[] args) throws XPRSexception
{

XPRB bcl;

XPRBprob bcl_prob;

XPRSprob opt_prob;

IntSolCallback cb;

XPRBvar x;

bcl = new XPRB(); /+ Initialize BCL x/

bcl_prob = bcl.newProb ("Examplel"); /x Create a new problem in BCL x/
XPRS.init () ; /* Initialize Xpress-Optimizer =/

x = bcl_prob.newVar ("x_1", XPRB_BV); /% Define a variable */
. /* Define the rest of the problem x/
opt_prob = bcl_prob.getXPRSprob () ;
cb = new IntSolCallback();
opt_prob.addIntSolListener (cb, bcl_prob);
/* Define an integer solution callback =/
bcl_prob.maxim("g"); /* Maximize the MIP problem =/

Note: The synchronization between BCL and the Optimizer during the MIP search can only be
used with standard, single-thread MIP. In the case of parallel MIP solving solution information can
only be accessed through the Optimizer library functions whereby it is possible to use the column
or row indices saved for BCL modeling objects as shown below.

static class IntSolCallback implements XPRSintSolListener

{
public void XPRSintSolEvent (XPRSprob opt_prob, Object my_object)

{

Using BCL with the Optimizer library (©20009 Fair Isaac Corporation. All rights reserved. page 281

XPRBprob b
XPRBvar x;
int num;
double []

bcl_prob =
try {

cl_prob

sol;

(XPRBprob)my_object;

ncol = opt_prob.getIntAttrib (XPRS.ORIGINALCOLS) ;

sol = ne
opt_prob
num = op

System.o

x = bcl_]

/* Get the number of columns */
w double[ncol];
.getSol(sol, null, null, null); /* Get the solution =/
t_prob.getIntAttrib (XPRS.MIPSOLS) ;

/* Get number of the solution =/
ut.println("Solution " + num + ": Objective value: " +

opt_prob.getDblAttrib (XPRS.LPOBJVAL)) ;

prob.getVarByName ("x_1");

if (x.getColNum()>-1) /* Test whether variable is in the
matrix */
System.out.println(x.getName() + ": " + sol[x.getColNum()]);
sol = null;
}
catch (XPRSprobException e) {

System.out.println ("Error " + e.getCode() + ": " + e.getMessage());

Using BCL with the Optimizer library

(©20009 Fair Isaac Corporation. All rights reserved.

page 282

Appendix C

Working with cuts in BCL

This chapter describes an extension to BCL that enables the user to define cuts in a similar way to
constraints. Although cuts are just additional constraints, they are treated differently by BCL. To
start with, they are defined as a separate type (XPRBcut instead of XPRBctr). Besides the type,
the following differences between the representation and use of constraints and cuts in BCL may

be observed:

Cuts cannot be non-binding or ranged.

e Cuts are not stored with the problem, this is up to the user.

e Cuts have no names, but they have got an integer indicating their classification or

identification number.

e Function xPrRdelcut deletes the cut definition in BCL, but does not influence the problem
in Xpress-Optimizer if the cut has already been added to it.

e Cuts are added to the problem while it is being solved without having to regenerate the
matrix; they can only be added to the matrix (using function xPrRBaddcuts) in one of the
callback functions of the Xpress-Optimizer cut manager (see the Xpress-Optimizer manual).
Furthermore, they can only be defined on variables that are already contained in the matrix.

The following functions are available in BCL for handling cuts:

XPRBaddcutarrterm Add multiple linear terms to a cut. p. 33
XPRBaddcuts Add cuts to a problem. p. 34
XPRBaddcutterm Add a term to a cut. p. 35
XPRBdelcut Delete a cut definition. p. 49
XPRBdelcutterm Delete a term from a cut. p. 50
XPRBgetcutid Get the classification or identification number of a cut. p. 69
XPRBgetcutrhs Get the RHS value of a cut. p. 70
XPRBgetcuttype Get the type of a cut. p. 71
XPRBnewcut Create a new cut. p. 115
XPRBnewcutarrsum Create a sum cut with individual coefficients (i ci xi). p. 116
XPRBnewcutprec Create a precedence cut (v1+dur v2). p. 117

(©20009 Fair Isaac Corporation. All rights reserved. page 283

XPRBnewcut sum Create a sum cut (i xi). p. 118
XPRBprintcut Print out a cut. p. 130
XPRBsetcutid Set the classification or identification number of a cut. p. 146
XPRBsetcutmode Set the cut mode. p. 147
XPRBsetcutterm Set a cut term. p. 148
XPRBsetcuttype Set the type of a cut. p. 149

C.1 Example

The following example shows how the Xpress-Optimizer node cut manager callback may be
defined to add cuts during the branch and bound search. Function xPrBaddcut s that adds the
cuts to the problem in Xpress-Optimizer may only be called from one of the cut manager callback
functions. Nevertheless, cuts may be defined at any place in the program after BCL has been
initialized and the relevant variables have been defined. In order to keep the present example
simple, we only create and add cuts at a single node, they are therefore created in the cut
manager callback immediately before they are added to the problem. More realistically, cuts may
be generated subject to a certain search tree depth or depending on the solution values of
certain variables in the current LP-relaxation.

#include <stdio.h>
#include "xprb.h"
#include "xprs.h"

XPRBvar start[4];

int XPRS_CC usrcme (XPRSprob oprob, voidx vd)
{

XPRBcut cal2];

int num;

int 1=0;

XPRBprob bprob;

bprob = (XPRBprob)vd; /* Get the BCL problem x/
XPRSgetintattrib (oprob, XPRS_NODES, &num);
if (num == 2) /* Only generate cuts at node 2 */
{ /* cal: s_1+42 <= s_0 «/
ca[0] = XPRBnewcutprec (bprob, start[l], 2, start[0], 2);
ca[l] = XPRBnewcut (bprob, XPRB_L, 2); /% cal: 4%xs_2 — 5.3xs_3 <= =17 */

XPRBaddcutterm(cal[l], start([2], 4);

XPRBaddcutterm(cal[l], start[3], -5.3);

XPRBaddcutterm(ca[l], NULL, -17);

printf ("Adding constraints:\n");

for (i=0;1<2;i++) XPRBprintcut (cal[i]);

if (XPRBaddcuts (bprob, ca, 2)) printf ("Problem with adding cuts.\n");

}

return 0; /+ Call this func. once per node =*/

}

int main(int argc, char xxargv)
{

XPRBprob prob;

XPRSprob oprob;

prob=XPRBnewprob ("CutExpl") ; /+ Initialization =/

for (j=0; j<4; j++) start[j] = XPRBnewvar (prob, XPRB_PL, "start", 0, 500);

e /* Define constraints and an objective function =/
XPRBsetcutmode (prob, 1); /* Enable the cut mode x/

oprob = XPRBgetXPRSprob (prob) ; /* Get the Optimizer problem x/

Working with cuts in BCL (©20009 Fair Isaac Corporation. All rights reserved. page 284

XPRSsetcbcutmgr (oprob, usrcme, prob); /* Def. the cut manager callback =/
XPRBsolve (prob, "g"); /+ Solve the MIP problem =/

... /% Solution output =*/

return 0;

}

C.2 C++ version of the example

With BCL C++, the implementation of the cut example is similar to what we have seen in the
previous section since the same Xpress-Optimizer functions are used.

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

XPRBvar start [NJ];
XPRBprob p("Jobs"); // Initialize BCL and a new problem

int XPRS_CC usrcme (XPRSprob oprob, voidx vd)
{

XPRBcut cal2];

int num;

int 1=0;

XPRBprob xbprob;

bprob = (XPRBprobx*)vd; // Get the BCL problem
XPRSgetintattrib (oprob, XPRS_NODES, &num);

if (num == 2) // Only generate cuts at node 2
{

cal[0] = bprob->newCut (start[1l]+2 <= start[0], 2);

cal[l] = bprob->newCut (4xstart[2] - 5.3*start[3] <= -17, 2);

cout << "Adding constraints:" << endl;

for (i=0;1<2;i++) cali].print();

if (bprob->addCuts(ca,2)) cout << "Problem with adding cuts." << endl;
}

return 0; // Call this function once per node

}

int main(int argc, char xxargv)
{
XPRSprob oprob;

for (j=0; j<4; j++) start[j] = p.newVar ("start");

e // Define constraints and an objective function
oprob = p.getXPRSprob () ; // Get Optimizer problem
p.setCutMode (1) ; // Enable the cut mode
XPRSsetcbcutmgr (oprob, usrcme, &p) ; // Def. the cut manager callback
p.solve("g"); // Solve the problem as MIP

... // Solution output
return 0;

C.3 Java version of the example

As is explained in Section B.7, before accessing directly the problem held in Xpress-Optimizer we
need to initialize explicitly the Optimizer Java. The cut manager callback is implemented in Java
by the class ‘cutMgrListener’.

Working with cuts in BCL (©20009 Fair Isaac Corporation. All rights reserved. page 285

import java.io.x;
import com.dashoptimization.x;

public class xbcutex

{

static XPRBvar|[] start;
static XPRB bcl;

static class CutMgrCallback implements XPRScutMgrListener
{
public int XPRScutMgrEvent (XPRSprob oprob, Object data)
{
XPRBprob bprob;
XPRBcut [] caj;
int num, i;

bprob = (XPRBprob)data; /* Get the BCL problem x/

try

{

num = oprob.getIntAttrib (XPRS.NODES) ;

if (num == 2) /* Only generate cuts at node 2 x/
{
ca = new XPRBcut[2];

cal[0] = bprob.newCut (start[l].add(2) .lEgl(start[0]), 2);
cal[l] = bprob.newCut (start[2].mul (4) .add(start[3].mul(-5.3)) .1lEql(-17),
System.out.println ("Adding constraints:");

for (i=0;1i<2;i++) cali]l.print();
bprob.addCuts (ca) ;
}
}
catch (XPRSprobException e)
{
System.out.println("Error " + e.getCode() + ": " + e.getMessage());
}
return 0; /* Call this method once per node x/
}
}

public static void main(String[] args) throws XPRSexception
{

XPRBprob p;

XPRSprob oprob;

CutMgrCallback cb;

bcl = new XPRB(); /* Initialize BCL =/

p = bcl.newProb ("Jobs"); /* Create a new problem */
XPRS.init () ; /+ Initialize Xpress—Optimizer =/
start = new XPRBvar([4]; /* Create ’start’ variables x/
for (3=0; j<4; j++) start[j] = p.newVar ("start");

/* Define constraints and an objective function =/

oprob = p.getXPRSprob () ; /* Get Optimizer problem =*/
p.setCutMode (1) ; /* Enable the cut mode x/

cb = new CutMgrCallback();

oprob.addCutMgrListener (cb, p); /+* Def. the cut manager callback =/
p.solve("g"); /* Solve the problem as MIP x/

/* Solution output =*/

Working with cuts in BCL (©20009 Fair Isaac Corporation. All rights reserved.

page 286

Index

Symbols

x, 211

+, 211

+=, 190, 204, 210, 216, 246
- 211

-=, 190, 204, 210

<=, 244

=, 190, 204, 210, 246

activity value, 11, 60, 192
add

index element, 36, 217
array, 12, 171

add entry, 143

append, 41

create, 8

delete, 46

incremental definition, 8

name, 8, 61

print, 20

size, 8, 62

terminate, 56

B
basis
class, 187, 267
delete, 11, 47, 188
load, 11, 107, 230
save, 11, 142, 238
validity check, 188
BCL
version number, 7, 104, 184
bound
fix, 7, 59, 252
get, 7, 63, 253, 256
integer limit, 7, 82, 156, 253, 258
lower, 7, 155, 258
semi-continuous limit, 7, 82, 156, 253, 258
upper, 7, 166, 259
branching directive
SOS, 19, 164, 250
variable, 7, 167, 257

C

callback
error messages, 7, 24, 44
messages, 6, 24, 45

parallel MIP, 278, 280, 281
printing, 6, 24, 45
change
constraint type, 9
variable type, 7, 169, 258
column order, 144, 185, 238
constraint
activity, 11, 60, 192
add array, 9, 32
add linear expression, 191
add quadratic term, 37
add term, 9, 40, 191
add terms, 32
change type, 9, 145, 202
class, 189, 267
creation, 9, 114, 233
definition, 9, 114, 233
delayed, 72, 197, 199
delete, 9, 48, 199, 224
delete coefficient, 9
delete quadratic term, 52
delete term, 55, 192
dual, 11,73, 193
finding, 225
get range, 9, 90, 194, 195
get RHS, 9, 92, 195
get type, 9, 68, 197
index, 9, 93, 196
indicator, 80, 81, 194, 198, 200
model cut, 9, 85, 198
name, 9, 66, 194
number, 93, 196
precedence, 121
print, 20, 129, 198
ranging information, 67, 196
set coefficient, 9
set delayed, 151
set indicator, 154
set model cut, 9, 157, 200
set quadratic term, 160
setrange, 9, 161, 201
set term, 165, 202
set type, 145, 202
slack, 11, 95, 197
sum, 126
sum with coefficients, 112
validity check, 198
copy
expression, 212
create

(©20009 Fair Isaac Corporation. All rights reserved.

page 287

cut

cuts

D
data

data

index set, 119, 176, 235, 262

add array, 33

add linear expression, 205
add term, 35, 206

add terms, 33
class, 204, 267

classification, 69, 207
creation, 115, 234
definition, 115, 234
delete, 49, 208, 224
delete term, 50, 206

get RHS, 70, 207

get type, 71, 207
identification, 69, 207
model, 9, 85, 157, 198, 200
precedence, 117

print, 130, 208

set classification, 146, 208
set identification, 146, 208
set term, 148, 209

set type, 149, 209

sum, 118

sum with coefficients, 116
switch mode, 147, 239
validity check, 207

cut mode, 147, 239

add, 34, 223

input, 137, 139, 176, 262
reading, 137, 139

input, 16

decimal sign

change, 6, 150
delayed constraint, 72, 151, 197, 199

delete

array, 46
basis, 188

constraint, 9, 48, 199, 224
constraint coefficient, 9
constraint term, 55, 192
cut, 49, 208, 224
expression term, 213

index set, 219

problem, 5, 51

set element, 19

set member, 54, 248
SOS, 19, 53, 224

dictionary

size, 152, 239

directive

delete, 42, 223
SOS, 19, 164, 176, 250, 262
variable, 7, 14, 167, 257

directives

dual values, 11, 73, 193

file, 173, 243

E

E-1502, 270
E-1504, 270
E-1505, 270
E-1506, 270
E-1507, 270
E-1508, 270
E-1509, 270
E-1510, 270
E-1512, 270
E-1515, 271
E-1521, 271
E-1522, 271
E-1523, 271
E-1524, 271
E-1526, 271
E-1530, 271
E-1531, 271
E-1535, 272
E-1536, 272
E-1538, 272
E-1539, 272
E-1540, 272
E-1541, 272
E-1542, 272
E-1543, 272
E-1545, 272
E-1546, 272
E-1547,272
E-1550, 272
E-1560, 273
E-1561, 273
E-1563, 273
E-1565, 273
E-1566, 273
E-1567, 273
E-1571, 273
E-1575, 273
E-1582, 273
E-1591, 273
error

exit, 6, 153
error callback, 7, 24, 44
error handling, 6, 24, 153
error message, 7, 24, 44

expression

add expression, 212
add term, 212

class, 210, 267
constant multiplication, 213
copy, 212

delete term, 213
evaluation, 213
linear, 182, 268
multiplication, 213
negation, 214
quadratic, 182, 268
set term, 214

Index

(©20009 Fair Isaac Corporation. All rights reserved.

page 288

F
file
reading, 16
find by name, 64
constraint, 225
index set, 226
SOS, 229
variable, 229
format
real numbers, 162, 186, 241

G

garbage collection, 265
generate matrix, 108, 231
getCRef, 181
getCtrByName, 181
getVarByName, 181
getXPRSprob, 268

|
IS, see irreducible infeasible set
incremental definition
array, 8
index
constraint, 9, 93, 196
variable, 7, 65, 252
index set, 16
add element, 16, 36, 217
class, 216, 267
create, 16, 176, 262
creation, 119, 235
delete, 219
element name, 16, 75, 218
find element, 16, 74, 218
finding, 226
index number, 16, 74, 218
name, 16, 76, 218
print, 20, 132, 219
size, 16,77, 218
validity check, 219
indicator constraint, 154, 194, 198, 200
sense, 80
variable, 81
initialization, 5, 106, 122, 222, 273
explicit, 184
input
decimal sign, 6, 150
file, 137, 139, 176, 262
input file, 16
interface pointer, 100, 168
callback, 43
irreducible infeasible set
constraints, 78
number, 86, 227
variables, 78
isVvalid, 181

L
lazy constraint, see delayed constraint
license, 5, 106, 273

linear expression, see expression

linear relation, see relation

load matrix, 6

load MIP solution, 109, 231

logic constraint, see indicator constraint

M
matrix
add cuts, 34, 223
column ordering, 144, 185, 238
generation, 108, 231
loading, 6
output, 21, 57, 176, 225, 262
matrix generation
column order, 144, 185, 238
maximize, 11, 110, 170, 232, 242
message level, 6, 158, 179, 185, 240, 265
minimize, 11, 111, 170, 233, 242
MIPPRESOLVE, 277
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Quadratic Programming, 22
model cut, 9, 157, 200
modeling object

finding, 64
N
name

array, 8, 61

composing of, 120
constraint, 9, 66, 194
dictionary, 152, 239
index set, 16, 76, 218
index set element, 16, 75, 218
problem, 88, 227
SOS, 19, 97, 248
variable, 7, 101, 253
namespace, 174
negation
expression, 214
number
1IS, 86, 227

(o)
objective
get sense, 10, 94, 229
quadratic, 22
set sense, 10, 163, 241
value, 11, 87, 228
objective function, 159, 240
print, 133, 237
optimize, 11, 170, 242
Optimizer problem, 105, 230
output
file, 21, 57, 225
redirection, 179, 265
output level, 6, 158, 179, 185, 240, 265
output stream, 265

P
package, 260
parallel MIP, 278, 280, 281

Index

(©20009 Fair Isaac Corporation. All rights reserved. page 289

partial integer

get limit, 7, 82, 253

set limit, 7, 156, 258
precedence constraint, 10, 121
precedence cut, 117
PRESOLVE, 277
print

array, 20, 128

constraint, 20, 129, 198

cut, 130, 208

index set, 20, 132, 219

objective function, 133, 237

problem, 20, 134, 176, 237, 262

program output, 131

SQOS, 20, 135, 249

text, 131

variable, 20, 136, 257
print flag, 6, 158, 185, 240
printing

decimal sign, 6, 150
printing callback, 6, 24, 45
priority, 14

delete, 42, 223

SQOS, 19, 164, 250

variable, 7, 167, 257
problem

add cuts, 34, 223

class, 220, 267

delete, 5, 51

delete basis, 11, 47

file output, 21, 57, 225

initialization, 5, 122, 222

load basis, 11, 107, 230

LP status, 11, 83, 226

maximize, 110, 232

minimize, 111, 233

MIP status, 11, 84, 227

objective value, 11, 87, 228

output, 5, 134, 237

print, 21, 176, 262

reset, 141, 237

save basis, 11, 142, 238

solve, 11, 170, 242

status, 11, 89, 228

synchronization, 172, 243
program output

print, 20, 131

Q

QCQP, see Quadratically Constrained Quadratic

Programming
QP, see Quadratic Programming
quadratic expression, see expression
Quadratic Programming, 22
quadratic term, 37, 160
delete, 52
Quadratically Constrained Quadratic
Programming, 22

R
range, 9, 90, 161, 194, 195, 201

get values, 9
ranging information
constraint, 67, 196
variable, 102, 255
read
data line, 137, 139
reduced cost value, 11, 91, 254
reference constraint, 19, 124
relation, 182, 268
class, 244, 267
get type, 245
linear, 182
quadratic, 182
reset
problem, 141, 237
RHS, 9, 70, 92, 195, 207
running time, 99, 183

S
scheduling, 11
security system, 5
semi-continuous
get limit, 7, 82, 253
set limit, 7, 156, 258
semi-continuous integer
get limit, 7, 82, 253
set limit, 7, 156, 258
sense

objective function, 10, 94, 163, 229, 241

set
cut mode, 147, 239
index, 16
size
array, 8, 62
dictionary, 152, 239
index set, 16, 77, 218
size limit, 273
slack values, 11, 95, 197
solution, 11, 96, 255
load, 109, 231
objective, 11, 87, 228
solution value
expression, 213
solve, 11, 110, 111, 170, 232, 233, 242
SOS
add array, 19, 38
add element, 19
add linear expression, 247
add member, 39, 247
add members, 38
class, 246, 267

creation, 19, 123-125, 176, 235, 262

delete, 19, 53, 224
delete element, 19
delete member, 54, 248
finding, 229

name, 19, 97, 248

print, 20, 135, 249

set directive, 19, 164, 250
type, 19, 98, 249

Index

(©20009 Fair Isaac Corporation. All rights reserved.

page 290

validity check, 249
weights, 125
sqr, 215
square, 215
status
LP, 11, 83, 226
MIP, 11, 84, 227
problem, 11, 89, 228
Student Edition, 130
Student mode, 273
student version, 22, 57, 129, 132-135, 198, 208,
219, 225, 237, 249, 257
sum constraint, 10, 112, 126
sum cut, 118

T
table
sparse, 16
time measure, 99, 183
type
constraint, 9, 68, 145, 197, 202
cut, 71, 149, 207, 209
relation, 245
SQOS, 19, 98, 249
variable, 7, 103, 169, 256, 258

\'
variable
array, 171
array of, 8, 113
change type, 7, 169, 258
class, 251, 267
creation, 7, 127, 236
deletion callback, 43
finding, 229
fix value, 7, 59, 252
get bounds, 7, 63
get limit, 7, 82, 253
get lower bound, 253
get type, 7, 103, 256
get upper bound, 256
index, 7, 65, 252
interface pointer, 100, 168
lower bound, 7, 155, 258
name, 7, 101, 253
number, 65, 252
print, 20, 136, 257
print array, 128
ranging information, 102, 255
reduced cost, 11, 91, 254
set directive, 7, 167, 257
set limit, 7, 156, 258
set type, 169, 258
solution, 11, 96, 255
upper bound, 7, 166, 259
validity check, 256
variable types, 1
version number, 7, 104, 184

w
W-1513, 270

W-1514, 271
w-1516, 271
W-1518, 271
W-1519, 271
W-1520, 271
W-1525, 271
W-1527, 271
W-1551, 272
W-1552, 272
W-1555, 272
W-1562, 273
W-1568, 273
Ww-1570, 273
W-1580, 273
W-1587, 273

X

xbcut, 115

XPRB, 183
XPRB.getTime, 183
XPRB.getVersion, 183
XPRB.init, 184
XPRB.setColOrder, 184
XPRB.setMsgLevel, 185
XPRB.setRealFmt, 185
XPRB_ARR, 64

XPRB_BV, 103, 113, 127, 169, 236, 256, 258, 268

XPRB_CTR, 64
XPRB_DICT_IDX, 152, 239
XPRB_DICT_NAMES, 152, 239
XPRB_DIR, 89, 228
XPRB_DN, 164, 167, 249, 257

XPRB_E, 68, 71, 112, 114-116, 118, 126, 145, 149,

197, 202, 207, 209, 244, 245
XPRB_ERR, 44
XPRB_FGETS, 137, 139

XPRB_G, 68, 71, 112, 114-116, 118, 126, 145, 149,

197, 202, 207, 209, 244, 245
XPRB_GEN, 89, 228
XPRB_IDX, 64

XPRB_L, 68, 71, 112, 114-116, 118, 126, 145, 149,

197, 202, 207, 209, 244, 245
XPRB_LCOST, 102, 254
XPRB_LOACT, 67, 102, 196, 254
XPRB_LP, 57, 225
XPRB_LP_CUTOFF, 83, 226
XPRB_LP_CUTOFF_IN_DUAL, 83, 226
XPRB_LP_INFEAS, 83, 226
XPRB_LP_OPTIMAL, 83, 226
XPRB_LP_UNBOUNDED, 83, 226
XPRB_LP_UNFINISHED, 83, 226
XPRB_LP_UNSOLVED, 83, 226
XPRB_MAXIM, 94, 163, 228, 241
XPRB_MINIM, 94, 163, 228, 241
XPRB_MIP_INFEAS, 84, 227
XPRB_MIP_LP_NOT_OPTIMAL, 84, 227
XPRB_MIP_LP_OPTIMAL, 84, 227
XPRB_MIP_NO_SOIL_FOUND, 84, 227
XPRB_MIP_NOT_LOADED, 84, 227
XPRB_MIP_OPTIMAL, 84, 227

Index

(©20009 Fair Isaac Corporation. All rights reserved.

page 291

XPRB_MIP_ SOLUTION, 84, 227
XPRB_MOD, 89, 228

XPRB_MPS, 57, 225

XPRB_N, 68, 112, 114, 126, 145, 197, 202, 244, 245
XPRB_PD, 164, 167, 249, 257

XPRB_PI, 103, 113, 127, 169, 236, 256, 258
XPRB_PL, 103, 113, 127, 169, 236, 256, 258
XPRB_PR, 164, 167, 249, 257
XPRB_PU, 164, 167, 249, 257
XPRB_R, 68, 197
XPRB_S1, 98, 123-125, 235, 248
XPRB_S2, 98, 123-125, 235, 248

XPRB_SC, 103, 113, 127, 169, 236, 256, 258
XPRB_STI, 103, 113, 127, 169, 236, 256, 258
XPRB_SOL, 89, 228

XPRB_S0S, 64

XPRB_UCOST, 102, 254
XPRB_UDN, 67, 102, 196, 254

XPRB_UTI, 103, 113, 127, 169, 236, 256, 258
XPRB_UP, 164, 167, 249, 257
XPRB_UPACT, 67, 102, 196, 254
XPRB_UUP, 67, 102, 196, 254
XPRB_VAR, 64

XPRB_WAR, 44
XPRB_XPRS_PROB, 172, 243
XPRB_XPRS_SOL, 172, 243
XPRBaddarrterm, 32
XPRBaddcutarrterm, 33
XPRBaddcuts, 34

XPRBaddcutterm, 35

XPRBaddidxel, 36
XPRBaddgterm, 22, 37
XPRBaddsosarrel, 38
XPRBaddsosel, 39

XPRBaddterm, 40

XPRBapparrvarel, 41

XPRBarrvar, 30

XPRBbasis, 30, 187
XPRBbasis.getCRef, 187
XPRBbasis.isValid, 187
XPRBbasis.reset, 188
XPRBcleardir, 42
XPRBctr, 30, 189, 190, 283
XPRBctr.add, 191
XPRBctr.addTerm, 191
XPRBctr.delTerm, 192
XPRBctr.getAct, 192
XPRBctr.getCRef, 193
XPRBctr.getDual, 193
XPRBctr.getIndicator, 193
XPRBctr.getIndVar, 194
XPRBctr.getName, 194
XPRBctr.getRange, 194
XPRBctr.getRangel, 195
XPRBctr.getRangelU, 195
XPRBctr.getRHS, 195
XPRBctr.getRNG, 195
XPRBctr.getRowNum, 196
XPRBctr.getSlack, 196
XPRBctr.getType, 197

XPRBctr.isDelayed, 197
XPRBctr.isIndicator, 198
XPRBctr.isModCut, 198
XPRBctr.isvValid, 198
XPRBctr.print, 198
XPRBctr.reset, 199
XPRBctr.setDelayed, 199
XPRBctr.setIndicator, 199
XPRBctr.setModCut, 200
XPRBctr.setRange, 201
XPRBctr.setTerm, 202
XPRBctr.setType, 202
XPRBcut, 30, 204, 205, 283
XPRBcut .add, 205
XPRBcut .addTerm, 206
XPRBcut .delTerm, 206
XPRBcut .getCRef, 206
XPRBCut.getID,207
XPRBcut .getRHS, 207
XPRBcut .getType, 207
XPRBcut .isvalid, 207
XPRBcut .print, 208
XPRBcut .reset, 208
XPRBcut .setID, 208
XPRBcut .setTerm, 209
XPRBcut .setType, 209
XPRBdefcbdelvar, 43
XPRBdefcberr, 44
XPRBdefcbmsg, 45
XPRBdelarrvar, 46
XPRBdelbasis, 47
XPRBdelctr, 48
XPRBdelcut, 49
XPRBdelcutterm, 50
XPRBdelprob, 51
XPRBdelqgterm, 52
XPRBdelsos, 53
XPRBdelsosel, 54
XPRBdelterm, 55
XPRBendarrvar, 56
XPRBerror, 268
XPRBexportprob, 22, 57
XPRBexpr, 210, 211
XPRBexpr.add, 212
XPRBexpr.addTerm, 212
XPRBexpr.assign, 212
XPRBexpr.delTerm, 213
XPRBexpr.getSol, 213
XPRBexpr.mul, 213
XPRBexpr.neg, 214
XPRBexpr.setTerm, 214
XPRBfinish, 58
XPRBfixvar, 59
XPRBfree, 58
XPRBgetact, 60
XPRBgetarrvarname, 61
XPRBgetarrvarsize, 62
XPRBgetbounds, 63
XPRBgetbyname, 64
XPRBgetcolnum, 65, 277

Index

(©20009 Fair Isaac Corporation. All rights reserved.

page 292

XPRBgetctrname, 66
XPRBgetctrrng, 67
XPRBgetctrtype, 68
XPRBgetcutid, 69
XPRBgetcutrhs, 70
XPRBgetcuttype, 71
XPRBgetdelayed, 72
XPRBgetdual, 73
XPRBgetidxel, 74
XPRBgetidxelname, 75
XPRBgetidxsetname, 76
XPRBgetidxsetsize, 77
XPRBgetiis, 78
XPRBgetindicator, 80
XPRBgetindvar, 81
XPRBgetlim, 82
XPRBgetlpstat, 83
XPRBgetmipstat, 84
XPRBgetmodcut, 85
XPRBgetnumiis, 86
XPRBgetobijval, 87
XPRBgetprobname, 88
XPRBgetprobstat, 89
XPRBgetrange, 90
XPRBgetrcost, 91
XPRBgetrhs, 92
XPRBgetrownum, 93, 277
XPRBgetsense, 94
XPRBgetslack, 95
XPRBgetsol, 96
XPRBgetsosname, 97
XPRBgetsostype, 98
XPRBgettime, 99
XPRBgetvarlink, 100
XPRBgetvarname, 101
XPRBgetvarrng, 102
XPRBgetvartype, 103
XPRBgetversion, 104
XPRBgetXPRSprob, 105
XPRBidxset, 30
XPRBindexSet, 216
XPRBindexSet .addElement, 217
XPRBindexSet.getCRef, 217
XPRBindexSet.getIndex, 217
XPRBindexSet .getIndexName, 218
XPRBindexSet .getName, 218
XPRBindexSet.getSize, 218
XPRBindexSet.isValid, 219
XPRBindexSet.print, 219
XPRBindexSet .reset, 219
XPRBinit, 106, 275
XPRBlicense, 268
XPRBlicenseError, 268
XPRBloadbasis, 107
XPRBloadmat, 108, 276
XPRBloadmipsol, 109
XPRBmaxim, 110
XPRBminim, 111
XPRBnewarrsum, 112
XPRBnewarrvar, 113

XPRBnewctr, 114
XPRBnewcut, 115
XPRBnewcutarrsum, 116
XPRBnewcutprec, 117
XPRBnewcutsum, 118
XPRBnewidxset, 119
XPRBnewname, 120
XPRBnewprec, 121
XPRBnewprob, 106, 122, 275
XPRBnewsos, 123
XPRBnewsosrc, 124
XPRBnewsosw, 125
XPRBnewsum, 126
XPRBnewvar, 127
XPRBprintarrvar, 128
XPRBprintctr, 22, 129
XPRBprintcut, 130
XPRBprintf, 131
XPRBprintidxset, 132
XPRBprintobij, 22, 133
XPRBprintprob, 22, 134
XPRBprintsos, 135
XPRBprintvar, 136
XPRBprob, 30, 220, 222
XPRBprob.addCuts, 222
XPRBprob.clearDir, 223
XPRBprob.delCtr, 224
XPRBprob.delCut, 224
XPRBprob.delSos, 224
XPRBprob.exportProb, 224
XPRBprob.getCRef, 225
XPRBprob.getCtrByName, 225
XPRBprob.getIndexSetByName, 226
XPRBprob.getLPStat, 226
XPRBprob.getMIPStat, 227
XPRBprob.getName, 227
XPRBprob.getNumIIs, 227
XPRBprob.getObijval, 228
XPRBprob.getProbStat, 228
XPRBprob.getSense, 228
XPRBprob.getSosByName, 229
XPRBprob.getVarByName, 229
XPRBprob.getXPRSprob, 230
XPRBprob.loadBasis, 230
XPRBprob.loadMat, 231
XPRBprob.loadMIPSol, 231
XPRBprob.maxim, 232
XPRBprob.minim, 232
XPRBprob.newCtr, 233
XPRBprob.newCut, 234
XPRBprob.newIndexSet, 235
XPRBprob.newSos, 235
XPRBprob.newVar, 236
XPRBprob.print, 237
XPRBprob.printObj, 237
XPRBprob.reset, 237
XPRBprob.saveBasis, 238
XPRBprob.setColOrder, 238
XPRBprob.setCutMode, 239
XPRBprob.setDictionarySize, 239

Index

(©20009 Fair Isaac Corporation. All rights reserved. page 293

XPRBprob.setMsgLevel, 240

XPRBprob.setObj, 240
XPRBprob.setRealFmt, 241
XPRBprob.setSense, 241
XPRBprob.solve, 242
XPRBprob.sync, 242
XPRBprob.writeDir, 243
XPRBreadarrlinecb, 137
XPRBreadlinecb, 139
XPRBrelation, 244

XPRBrelation.getType, 244

XPRBresetprob, 141
XPRBsavebasis, 142
XPRBsetarrvarel, 143
XPRBsetcolorder, 144
XPRBsetctrtype, 145
XPRBsetcutid, 146
XPRBsetcutmode, 147
XPRBsetcutterm, 148
XPRBsetcuttype, 149
XPRBsetdecsign, 150
XPRBsetdelayed, 151

XPRBsetdictionarysize, 152

XPRBseterrctrl, 153
XPRBsetindicator, 154
XPRBsetlb, 155
XPRBsetlim, 156
XPRBsetmodcut, 157
XPRBsetmsglevel, 158
XPRBsetobj, 22, 159
XPRBsetqgterm, 22, 160
XPRBsetrange, 161
XPRBsetrealfmt, 162
XPRBsetsense, 163
XPRBsetsosdir, 164
XPRBsetterm, 165
XPRBsetub, 166
XPRBsetvardir, 167
XPRBsetvarlink, 168
XPRBsetvartype, 169
XPRBsolve, 170
XPRBsos, 30, 246
XPRBsos.add, 247
XPRBsos.addElement, 247
XPRBsos.delElement, 248
XPRBsos.getCRef, 248
XPRBsos.getName, 248
XPRBsos.getType, 248
XPRBsos.isValid, 249
XPRBsos.print, 249
XPRBsos.setDir, 249
XPRBstartarrvar, 171
XPRBsync, 172
XPRBvar, 30, 251, 252
XPRBvar.fix, 252
XPRBvar.getColNum, 252
XPRBvar.getCRef, 253
XPRBvar.getLB, 253
XPRBvar.getLim, 253
XPRBvar.getName, 253

XPRBvar.getRCost, 254
XPRBvar.getRNG, 254
XPRBvar.getSol, 255
XPRBvar.getType, 256
XPRBvar.getUB, 256
XPRBvar.isvalid, 256
XPRBvar.print, 257
XPRBvar.setDir, 257
XPRBvar.setLB, 258
XPRBvar.setLim, 258
XPRBvar.setType, 258
XPRBvar.setUB, 259
XPRBwritedir, 173
XPRSalter, 275
XPRSbtran, 275
XPRSftran, 275
XPRSgetintattrib, 274
XPRSgetintcontrol, 274
XPRSgetlpsol, 275, 277
XPRSgetmipsol, 275, 277
XPRSglobal, 275
XPRSiis, 275
XPRSinit, 275
XPRSloadbasis, 275
XPRSloaddirs, 275
XPRSloadglobal, 275
XPRSloadlp, 275
XPRSloadap, 275
XPRSloadsecurevecs, 275
XPRSmaxim, 275
XPRSminim, 275
XPRSrange, 275
XPRSreadbasis, 275
XPRSreaddirs, 275
XPRSreadprob, 275
XPRSrestore, 275
XPRSsave, 275
XPRSscale, 275
XPRSsetcbmessage, 45, 275
XPRSsetintcontrol, 274
XPRSsetprobname, 275
XPRSwritebasis, 275
XPRSwriteomni, 275
XPRSwriteprob, 275
XPRSwriteprtrange, 275
XPRSwriteprtsol, 275
XPRSwriterange, 275
XPRSwritesol, 275

Index

(©20009 Fair Isaac Corporation. All rights reserved.

page 294

	Introduction
	An overview of Xpress-BCL
	Note for Optimizer library users
	Structure of this manual
	Conventions used

	I Modeling with BCL
	Modeling with BCL
	Problem handling
	Initialization and termination
	Problem creation and deletion
	Other basic functions
	Input and output settings
	Error handling

	Variables
	Basic functions
	Variable arrays

	Constraints
	Basic functions
	Predefined constraint functions
	Objective function

	Solving and solution information
	Example
	Model formulation using basic functions
	Using variable arrays
	Completing the example: problem solving and output

	Further modeling topics
	Data input and index sets
	Example

	Special Ordered Sets
	Basic functions
	Array-based SOS definition
	Example

	Output and printing
	Example

	Quadratic Programming with BCL
	Example

	User error handling
	Efficent modeling with BCL
	Names dictionaries
	Disabling the names dictionary
	Setting the names dictionary size

	Handling of problems
	Resetting a problem
	Releasing a problem

	Constraint definition
	Object-oriented interfaces
	Order of enumeration

	II BCL library and class reference
	BCL C library functions
	Layout for function descriptions
	XPRBaddarrterm
	XPRBaddcutarrterm
	XPRBaddcuts
	XPRBaddcutterm
	XPRBaddidxel
	XPRBaddqterm
	XPRBaddsosarrel
	XPRBaddsosel
	XPRBaddterm
	XPRBapparrvarel
	XPRBcleardir
	XPRBdefcbdelvar
	XPRBdefcberr
	XPRBdefcbmsg
	XPRBdelarrvar
	XPRBdelbasis
	XPRBdelctr
	XPRBdelcut
	XPRBdelcutterm
	XPRBdelprob
	XPRBdelqterm
	XPRBdelsos
	XPRBdelsosel
	XPRBdelterm
	XPRBendarrvar
	XPRBexportprob
	XPRBfinish, XPRBfree
	XPRBfixvar
	XPRBgetact
	XPRBgetarrvarname
	XPRBgetarrvarsize
	XPRBgetbounds
	XPRBgetbyname
	XPRBgetcolnum
	XPRBgetctrname
	XPRBgetctrrng
	XPRBgetctrtype
	XPRBgetcutid
	XPRBgetcutrhs
	XPRBgetcuttype
	XPRBgetdelayed
	XPRBgetdual
	XPRBgetidxel
	XPRBgetidxelname
	XPRBgetidxsetname
	XPRBgetidxsetsize
	XPRBgetiis
	XPRBgetindicator
	XPRBgetindvar
	XPRBgetlim
	XPRBgetlpstat
	XPRBgetmipstat
	XPRBgetmodcut
	XPRBgetnumiis
	XPRBgetobjval
	XPRBgetprobname
	XPRBgetprobstat
	XPRBgetrange
	XPRBgetrcost
	XPRBgetrhs
	XPRBgetrownum
	XPRBgetsense
	XPRBgetslack
	XPRBgetsol
	XPRBgetsosname
	XPRBgetsostype
	XPRBgettime
	XPRBgetvarlink
	XPRBgetvarname
	XPRBgetvarrng
	XPRBgetvartype
	XPRBgetversion
	XPRBgetXPRSprob
	XPRBinit
	XPRBloadbasis
	XPRBloadmat
	XPRBloadmipsol
	XPRBmaxim
	XPRBminim
	XPRBnewarrsum
	XPRBnewarrvar
	XPRBnewctr
	XPRBnewcut
	XPRBnewcutarrsum
	XPRBnewcutprec
	XPRBnewcutsum
	XPRBnewidxset
	XPRBnewname
	XPRBnewprec
	XPRBnewprob
	XPRBnewsos
	XPRBnewsosrc
	XPRBnewsosw
	XPRBnewsum
	XPRBnewvar
	XPRBprintarrvar
	XPRBprintctr
	XPRBprintcut
	XPRBprintf
	XPRBprintidxset
	XPRBprintobj
	XPRBprintprob
	XPRBprintsos
	XPRBprintvar
	XPRBreadarrlinecb
	XPRBreadlinecb
	XPRBresetprob
	XPRBsavebasis
	XPRBsetarrvarel
	XPRBsetcolorder
	XPRBsetctrtype
	XPRBsetcutid
	XPRBsetcutmode
	XPRBsetcutterm
	XPRBsetcuttype
	XPRBsetdecsign
	XPRBsetdelayed
	XPRBsetdictionarysize
	XPRBseterrctrl
	XPRBsetindicator
	XPRBsetlb
	XPRBsetlim
	XPRBsetmodcut
	XPRBsetmsglevel
	XPRBsetobj
	XPRBsetqterm
	XPRBsetrange
	XPRBsetrealfmt
	XPRBsetsense
	XPRBsetsosdir
	XPRBsetterm
	XPRBsetub
	XPRBsetvardir
	XPRBsetvarlink
	XPRBsetvartype
	XPRBsolve
	XPRBstartarrvar
	XPRBsync
	XPRBwritedir

	BCL in C++
	An overview of BCL in C++
	Example
	QCQP Example
	Error handling

	C++ class reference
	XPRB
	getTime
	getVersion
	init
	setColOrder
	setMsgLevel
	setRealFmt

	XPRBbasis
	XPRBbasis
	getCRef
	isValid
	reset

	XPRBctr
	XPRBctr
	add
	addTerm
	delTerm
	getAct
	getCRef
	getDual
	getIndicator
	getIndVar
	getName
	getRange
	getRangeL
	getRangeU
	getRHS
	getRNG
	getRowNum
	getSlack
	getType
	isDelayed
	isIndicator
	isModCut
	isValid
	print
	reset
	setDelayed
	setIndicator
	setModCut
	setRange
	setTerm
	setType

	XPRBcut
	XPRBcut
	add
	addTerm
	delTerm
	getCRef
	getID
	getRHS
	getType
	isValid
	print
	reset
	setID
	setTerm
	setType

	XPRBexpr
	XPRBexpr
	add
	addTerm
	assign
	delTerm
	getSol
	mul
	neg
	setTerm
	sqr

	XPRBindexSet
	XPRBindexSet
	addElement
	getCRef
	getIndex
	getIndexName
	getName
	getSize
	isValid
	print
	reset

	XPRBprob
	XPRBprob
	addCuts
	clearDir
	delCtr
	delCut
	delSos
	exportProb
	getCRef
	getCtrByName
	getIndexSetByName
	getLPStat
	getMIPStat
	getName
	getNumIIS
	getObjVal
	getProbStat
	getSense
	getSosByName
	getVarByName
	getXPRSprob
	loadBasis
	loadMat
	loadMIPSol
	maxim
	minim
	newCtr
	newCut
	newIndexSet
	newSos
	newVar
	print
	printObj
	reset
	saveBasis
	setColOrder
	setCutMode
	setDictionarySize
	setMsgLevel
	setObj
	setRealFmt
	setSense
	solve
	sync
	writeDir

	XPRBrelation
	XPRBrelation
	getType

	XPRBsos
	XPRBsos
	add
	addElement
	delElement
	getCRef
	getName
	getType
	isValid
	print
	setDir

	XPRBvar
	XPRBvar
	fix
	getColNum
	getCRef
	getLB
	getLim
	getName
	getRCost
	getRNG
	getSol
	getType
	getUB
	isValid
	print
	setDir
	setLB
	setLim
	setType
	setUB

	BCL in Java
	An overview of BCL in Java
	Example
	QCQP Example
	Error handling

	Java class reference

	Appendix
	BCL error messages
	Using BCL with the Optimizer library
	Switching between libraries
	BCL-compatible Optimizer functions
	Incompatible Optimizer functions

	Initialization and termination
	Loading the matrix
	Indices of matrix elements
	Using BCL-compatible functions
	Using the Optimizer with BCL C++
	Using the Optimizer with BCL Java

	Working with cuts in BCL
	Example
	C++ version of the example
	Java version of the example

	Index

