
www.fico.com Make every decision countTM

FICOTM Xpress Optimization Suite

Guide for evaluators

Last update 26 May, 2009

Evaluator guide

FICOTM Xpress Optimization Suite

Guide for evaluators

26 May, 2009

Introduction

Welcome to FICOTM Xpress! This guide provides a framework for evaluating Xpress. Using this
guide you will be able to:

1. Verify that the Xpress installation was successful.

2. Decide which Xpress products to evaluate.

3. Evaluate Xpress.

1 Verify that the Xpress installation was successful

You can test that the Xpress installation was successful by launching Xpress-IVE (Windows
operating system only) or by running console commands (all operating systems).

1. Launch Xpress-IVE: Xpress-IVE is the integrated visual development environment for
Windows. To run Xpress-IVE, double click on the Xpress-IVE icon on your desktop or select
Start � Programs � Xpress � Xpress-IVE. You may also start up Xpress-IVE by typing ive in
a DOS window or by double clicking onto an Xpress-Mosel model file (file with extension
.mos).

2. Run console commands: At the command prompt1, type the following sequence of
commands:

optimizer�
 �	� (Enter)
quit

You will see output that looks like the following:

C:\> optimizer
Xpress-Optimizer v19.00.00
Hyper capacity, MIP (20 threads), Barrier (20 threads), Network, QP/MIQP
(c) Copyright Fair Isaac Corporation 2008

Using Xpress-Optimizer [C:\XpressMP\bin\xprs.dll]
Enter problem name >
[xpress C:\] quit

1To obtain a command prompt under Windows select Start� Programs� Accessories� Command Prompt

Decide which Xpress products to evaluate c©2009 Fair Isaac Corporation. All rights reserved. page 1

Evaluator guide

2 Decide which Xpress products to evaluate

In order to make this decision you must consider the type of problem that you wish to solve, the
tools that you wish to use for model development, the tools that you wish to use for model
deployment, and the platform you intend to use.

2.1 Type of problem

Xpress has solver engines for different types of problems:

Type of problem Solving engine

Linear Programming (LP) Xpress-Optimizer

Mixed Integer Programming (MIP)

Quadratic Programming (QP)

Mixed Integer Quadratic Programming (MIQP)

Quadratically Constrained Quadratic Programming (QCQP)

Linearly Constrained Convex Optimization (LCCO)

Non-Linear Programming (NLP) Xpress-SLP

Mixed Integer Non-Linear Programming (MINLP)

Stochastic Programming (SP) Xpress-SP

Constraint Programming (CP) Xpress-Kalis

Further information

See Xpress documentation (in the docs subdirectory of your Xpress installation or at
http://research-rules.fico.com/):

• Classification of mathematical programming problems: “Getting Started with Xpress”, 1.1.
‘Mathematical Programming’.

• Modeling with Mosel, in particular LP/MIP: “Xpress-Mosel User Guide”.

• Formulation of mathematical programming problems: see the book: “Applications of
Optimization with Xpress-MP”, Part I: ‘Developing Linear and Integer Programming models’.

• Stochastic Programming: “Overview of Stochastic Programming Applications” whitepaper.

• Constraint Programming: “Xpress-Kalis User Guide”.

2.2 Tools for model development and specification

Xpress provides the following tools for model development and specification:

• Xpress-Mosel/Xpress-IVE: Mosel is an advanced modeling and programming language.
Xpress-IVE is the integrated visual environment to develop Mosel models.

• Xpress-BCL: Object-oriented library callable from supported programming languages.

• Xpress-Optimizer libraries: Optimizer functions and procedures provided for low-level
integration with applications developed in supported programming languages.

Also, a model may be specified by a matrix in MPS or LP format.

Decide which Xpress products to evaluate c©2009 Fair Isaac Corporation. All rights reserved. page 2

http://research-rules.fico.com/

Evaluator guide

Further information

See the whitepaper “Modeling with Xpress” (available at
http://research-rules.fico.com/).

2.3 Tools for model deployment

Model deployment strongly depends on the tool used to specify the model. Deployment is
achieved through the use of Xpress libraries.

Model specified in Deployed using

Mosel Mosel libraries (C++/C, Java, VB, .NET)

BCL BCL libraries (C, C++, Java, VB, .NET)

Optimizer libraries Optimizer libraries (C++/C, Java, VB, .NET)

Note that for Stochastic Programming (Xpress-SP) and for Constraint Programming (Xpress-Kalis),
the model must be specified using Xpress-Mosel. Also, for Xpress-SLP deployed with Java and .NET
please contact Xpress Support. For Xpress-BCL deployed with .NET please contact Xpress Support.

Further information

See Xpress documentation (in the docs subdirectory of your Xpress installation or at
http://research-rules.fico.com/):

• Introductory examples (Mosel/BCL/Optimizer): “Getting Started with Xpress”.

• Mosel libraries examples: “Xpress-Mosel User Guide”, Part III: ‘Working with the Mosel
Libraries’.

• Complete application examples (Mosel): “Embedding optimization algorithms” whitepaper
(available at
http://research-rules.fico.com/).

• Mosel libraries documentation: “Mosel Library Reference Manual”.

• BCL: “BCL Reference Manual”.

• Optimizer: “Optimizer Reference Manual”.

2.4 Platform

Xpress-IVE is available on Microsoft Windows platforms only. Xpress-Kalis is available on
Microsoft Windows, Linux, and Solaris, all 32-bit only. All other products are available on every
supported platform.

3 Evaluate Xpress

The following four typical evaluator scenarios are defined depending on the choice of products
to evaluate (see question 2):

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 3

http://research-rules.fico.com/
http://research-rules.fico.com/
http://research-rules.fico.com/

Evaluator guide

• Scenario 1: Develop the model in Mosel for any kind of problem and deploy in any
programming language.

Tool for model development: Mosel

Type of problem: Any

Tool for model deployment: Mosel Libraries (C++/C, Java, VB, .NET)

• Scenario 2: Develop the model in BCL for problems requiring Xpress-Optimizer and deploy
in any programming language.

Tool for model development: BCL

Type of problem: LP, MIP, QP, MIQP

Tool for model deployment: BCL Libraries (C, C++, Java, VB, .NET)

• Scenario 3: Use your custom application to develop the model and then call the
Xpress-Optimizer libraries. Available for problems that can be solved with Xpress-Optimizer.

Tool for model development: Custom application that calls optimizer libraries.

Type of problem: LP, MIP, QP, MIQP, NLP, MNLP

Tool for model deployment: Optimizer libraries (C++/C, Java, VB, .NET)

• Scenario 4: Run a matrix that is readily available in LP or MPS format. Such a model may be
executed through the Xpress-IVE, console commands, or applications that call
Xpress-Optimizer library functions.

Each scenario defines a sequence of specific evaluation steps.

3.1 Evaluation steps for Scenario 1

Tool for model development: Mosel

Type of problem: Any

Tool for model deployment: Mosel Libraries (C++/C, Java, VB, .NET)

This scenario uses examples from the “Getting Started with Xpress” document that can be found
in directory \XpressMP\examples\getting_started\Mosel.

3.1.1 Launch Xpress-IVE

Xpress-IVE is the integrated visual development environment for Windows. To run Xpress-IVE,
double click on the Xpress-IVE icon on your desktop, select Start � Programs � Xpress �
Xpress-IVE. Otherwise, you may also start up IVE by typing ive in a DOS window or by double
clicking on a model file (file with extension .mos).

3.1.2 Open Mosel model in Xpress-IVE

To open a Mosel model file select File � Open. Locate the directory containing the evaluation
examples (Examples\Getting Started\Mosel) and open the file foliolp.mos. The model
“Portfolio optimization with LP” will open in the central pane (the IVE editor). This model seeks

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 4

Evaluator guide

an optimal investment portfolio using ten securities (shares), subject to some risk and regional
constraints. The comments in the code (text following the exclamation mark ‘!’) describe the
meaning of the different statements. Note that RET is an array of real values representing the
expected return of the shares. The decision variables in the model are given by the array frac of
type mpvar. The procedure maximize calls Xpress-Optimizer to maximize the objective function.
The code also contains statements to print the optimal solution and solution values.

Further information

• For more information on the model formulation for this example see: “Getting Started with
Xpress”, Chapter 2: ‘Building models’.

• For more information on the Mosel representation of the model for this example see:
“Getting Started with Xpress”, 3.2 ‘LP model’.

• For more information on the Xpress-IVE editor see Xpress-IVE Help (Select Help �
Xpress-IVE Help � The Editor).

• For more information on Mosel and other Mosel examples see “Xpress-Mosel User Guide”,
Chapter 1: ‘Getting started with Mosel’, 1.1 ‘Entering a model’.

3.1.3 Compile and run the Mosel model

To compile the Mosel model select Build � Compile. The status of the compilation is shown at
the bottom of Xpress-IVE (Build view of the Info Bar), and it should read foliolp.mos compiled
successfully. Upon successful compilation, the Project Bar on the left is populated with the entity
tree, which contains all the identifiers in the Mosel model. Successful compilation also creates the
compiled Mosel file foliolp.bim

Further information

• For more on compilation and compilation errors see: “Getting Started with Xpress”, 3.3.
‘Correcting errors and debugging a model’.

• For more on Xpress-IVE see the Xpress-IVE Help: Project Bar, Info Bar.

To run the Mosel model select Build � Run. If it was not previously compiled, running the model
will also compile it. Upon successful execution, the right window (Run Bar) displays output from
the Mosel code and from the Xpress-Optimizer on its various tabs. In particular, the Output/Input
tab shows the output printed by the solution printing statements in the Mosel model, and the
Stats and Matrix tabs show output from the Xpress-Optimizer. Also, the values of the entity tree
identifiers are displayed on tooltips or view dialogs (when clicking on identifier) after the
problem is solved.

String indices: The model data and solution are more easily understandable when using string
indices. Open and run model foliolps.mos. Explore output tabs and the entity tree.

Further information

• For more information on running the Mosel model for this example see: “Getting Started
with Xpress”, 3.4. ‘Solving, optimization displays and viewing the solution’.

• For more information on Xpress-IVE see the Xpress-IVE Help � Run Bar tabs/panes.

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 5

Evaluator guide

• For more information on string indices for this example see: “Getting Started with Xpress”,
3.4.1. ‘String indices’, and also “Xpress-Mosel User Guide”, 2.1.3. ‘The burglar problem
revisited’.

3.1.4 Work with data in Mosel

In Mosel models you may work with a large variety of data sources, ranging from simple text files
and other file formats such as databases to data exchanged in memory between a Mosel model
and a host application or between several concurrent Mosel models. We show here the most
frequent cases, namely text files and database access via ODBC.

Text files

Open and run model foliodata.mos. Note that this model has a parameters block and an
initializations from block. The parameters include the data input file, output file, and
other model constants. Parameters can be reset at run time, and they are particularly important
when a model is deployed within a business application. The initializations from block
reads data from the file folio.dat. This file has a Mosel-specific format that can be seen by
opening it in Xpress-IVE: (File � Open � Files of type: data file (*.dat)). The index sets and data
arrays in the model are created dynamically based on the data in the input file. Finally this model
directs the solution output to an external free-format file result.dat by calling the procedures
fopen and fclose.

Further information

For more information on working with data and using parameters in Mosel see: “Getting Started
with Xpress”, Chapter 4: ‘Working with data’. See also the Xpress-IVE wizard for parameters,
data input, and text output.

Spreadsheets and databases

Open and run model folioexcel.mos. The initializations from block in this program
reads data from an MS Excel spreadsheet. The model is accompanied by data in the file
folio.xls. Note that this example changes the sets RISK and NA into arrays of Booleans to
receive the data from the file. The initializations to block outputs the problem results back
to the spreadsheet. If the Excel file is open when writing to it the output data does not get saved,
letting you choose whether to keep the results or not. Repeated model executions will overwrite
previous output in the target range.

A second very similar model, folioodbc.mos, reads data from an ODBC data source (e.g., the MS
Access database folio.mdb) and outputs the problem results back to the database. The prefix to
the filename in the initializations blocks now is mmodbc.odbc, corresponding to the type of
data we work with; all else is the same as in the Excel model. The ODBC database access facility
can also be employed with MS Excel spreadsheets. However, some restrictions apply and we
recommend to use the Excel-specific data access as shown in the model folioexcel.mos.
Warning: In order to run this example, the ODBC driver for the corresponding data source must
be present. Also, in Windows you must make sure that a User Data Source called “MS Access
Database” is setup in the ODBC Data Source Administrator (Windows 2000 or XP: Start � Settings
� Control Panel � Administrative Tools � Data Sources (ODBC)).

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 6

Evaluator guide

Further information

• Using the ODBC module: “Xpress-Mosel User Guide”, Chapter 2: ‘Some illustrative
examples’ and the whitepaper “Using ODBC and other database interfaces with Mosel”.

• Documentation of the ODBC module: “Mosel Language Reference Manual”, Chapter 8:
‘mmodbc’.

• Overview of other possibilities of data exchange with external sources: “Xpress-Mosel User
Guide”, 16.1 ‘Generalized file handling’.

• Examples of advanced communication methods with external data sources are given in the
whitepaper “Generalized file handling in Mosel”.

3.1.5 Mosel MIP and quadratic models

Open and run the following Mosel models:

foliomip1.mos: This model introduces the array of binary variables buy to impose a constraint
limiting the number of different shares taken into the portfolio.

foliomip2.mos: This model redefines the array of variables frac to be semi-continuous, so that
at least a certain minimum amount of the budget is spent on each share that is bought.

folioqp.mos: This model uses a quadratic formulation to minimize the portfolio variance
subject to achieving a target expected return. The Mosel program solves the problem twice,
where the second run imposes a limit on the number of shares taken into the portfolio.

For each model, explore the solution and information displayed in the Run Bar tabs.

Further information

• “Getting Started with Xpress”, Chapter 6: ‘Mixed Integer Programming’ and Chapter 7:
‘Quadratic Programming’.

• Complete list of available MIP variable types: “Xpress-Mosel User Guide”, Chapter 4:
‘Integer Programming’.

3.1.6 Other problem types: Constraint Programming, nonlinear and stochastic models

All models we have seen so far use Xpress-Optimizer for problem solving (chosen with the
statement uses "mmxprs" at the begin of the model). If we wish to use a different solver, we
need to indicate the name of the corresponding solver module.

Open the model assign.mos: this model implements and solves an assignment problem with
Xpress-Kalis, that is, using Constraint Programming (CP) techniques. For given sets of workers and
machines the problem is to assign exactly one worker to every machine, maximizing the total
productivity. The productivity of a worker depends on the machine he is assigned to.

You may observe several differences to the models we have seen previously:
– The solver choice statement now is uses "kalis".
– The CP decision variables are of the type cpvar; their domain (=admissible values) can be set
with the procedure setdomain.
– CP models may have linear constraints (as in the ‘Total productivity’ constraint), however our
model also uses other types of constraint relations, so-called ‘global constraints’. The element

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 7

Evaluator guide

constraint formulates a discrete function in one variable, and the all_different relation states
that all variables in the constraint need to take a different value.
– The CP problem is solved with tree search methods. Instead of using the default search
strategies, it is usually preferable to choose a more problem-specific strategy (using procedure
cp_set_branching).
– The function cp_maximize is used to invoke the optimization.
All else (general structure, declarations, access to data, output printing) remains unchanged from
what we have seen so far.

When running this model with IVE the entity tree display is populated and the model output
appears in the Output/Input pane at the right hand side of the workspace. Detailed information
about the model execution can be found by selecting the tabs CP stats (summary problem
statistics) and CP search (graphical representation of the CP search tree).

Other solver types available for Mosel include Xpress-SLP for solving Nonlinear Programming
problems and Xpress-SP for stochastic optimization problems. Each of these solver modules comes
with problem-type specific functionality (such as variable and constraint types)—please see the
corresponding manuals. In addition certain IVE displays are adapted to the solver(s) used by a
Mosel model.

Further information

• Xpress-Kalis provides access to the functionality of the Constraint Programming solver Kalis
from within the Mosel environment. For more information about Xpress-Kalis see the
documents “Xpress-Kalis User Guide” and “Xpress-Kalis Reference Manual”.

• Xpress-SP is an extension of the Mosel language for formulating Stochastic Programming
problems. For more information about Xpress-SP see the document “Xpress Stochastic
Programming Guide”.

• Xpress-SLP is a solver for Non-Linear and Mixed Integer Non-Linear Programming based on
the technique of successive linear approximations. For more information about Xpress-SLP
see the document “Xpress-Mosel SLP Reference Manual”.

3.1.7 Deploying Mosel models

Open a Mosel model and select Deploy � Deploy or click the deploy button. This will open the
Deploy dialog box. Select the programming language you wish to run the Mosel model from, and
click the Next> button. This will open a Source Code Dialog containing the code for deployment.

Further information

• Xpress-IVE Help (Select Help � Xpress-IVE Help � Dialogs � Deploy Dialog).

• Introductory example (VB): “Getting Started with Xpress”, Chapter 10: ‘Embedding a Mosel
model in an application’.

• Further examples (C/Java/VB): “Xpress-Mosel User Guide”, Part III: ‘Working with the Mosel
Libraries’.

• Documentation of Mosel C libraries: “Xpress-Mosel Library Reference Manual”.

• Documentation of Mosel Java libraries: “Xpress-Mosel Library Reference Manual JavaDoc”.

• Documentation of the Mosel .NET interface: “Xpress-Mosel .NET Interface”.

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 8

Evaluator guide

3.1.8 Exporting matrix files

After executing a Mosel model select Build � Export matrix file in order to generate a file with
an LP or MPS representation of the model.

Further information

• Xpress-IVE Help (select Help � Xpress-IVE Help � Dialogs � Export to Matrix Dialog).

• “Getting Started with Xpress”, 9.4 ‘Matrix files’.

• Xpress-IVE Help (select Help � Xpress-IVE Help � Dialogs � Optimizer Dialog).

3.1.9 Mosel console commands

As an alternative to running Mosel models within Xpress-IVE you may execute them with the
Mosel standalone version. This mode is often preferrable for testing and experimentation, for
instance, if you wish to invoke a sequence of model runs from a batch file.

At the command prompt, type the following sequence of commands:

mosel
compile foliolp
load foliolp
run
quit

You will see output that looks like the following:

mosel

** Xpress-Mosel **
(c) Copyright Fair Isaac Corporation 2008
>compile foliolp
Compiling ‘foliolp’...
>load foliolp
>run
Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%
Returned value: 0
>quit
Exiting.

The command sequence above may be shortened to a single line:

mosel -c "exec foliolp"

Further information

See “Xpress-Mosel User Guide”, 1.1 ‘Entering a model’. See also “Xpress-Mosel Reference

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 9

Evaluator guide

Manual”, 1.1 ‘What is Mosel’ – ‘Running Mosel’.

3.1.10 Other Mosel topics

In addition to the topics addressed in this guide, the document “Getting Started with Xpress”
describes how to draw user graphs in Xpress-IVE (Chapter 5: ‘Drawing user graphs’) and how to
program heuristics with Mosel (Chapter 8: ‘Heuristics’). Further details on these topics can be
found in the “Xpress-Mosel User Guide”, Part II ‘Advanced language features’ that describes
Mosel’s programming facilities and includes other examples of heuristics, and under Part IV
‘Extensions and tools’ – 16.3 ‘Graphics with mmive and mmxad’.

Xpress Application Developer (XAD) extends the functionality of Mosel with a set of functions
and procedures for creating standard graphical user interfaces. To learn more about XAD see the
document “Xpress Application Development Reference Manual”.

Additional examples of modeling and programming with Mosel can be found in the directory
\XpressMP\examples\. Also, the book “Applications of Optimization with Xpress-MP” (Dash
Optimization, 2002) shows how to formulate and solve a large number of application problems
with Xpress: http://research-rules.fico.com/

3.2 Evaluation steps for Scenario 2

Develop a model in BCL for problems requiring Xpress-Optimizer and deploy in any programming
language.

Tool for model development: BCL

Type of problem: LP, MIP, QP, MIQP

Tool for model deployment: BCL Libraries (C, C++, Java, VB, .NET)

See “Getting Started with Xpress”, Part II: ‘Getting started with BCL’, which presents examples in
C++ language with detailed explanation. The examples are also implemented in C, Java, and VB
and they can be found in the corresponding directories
\XpressMP\examples\bcl*\UGExpl.

Further information

More examples and the complete documentation of BCL can be found in the “Xpress-BCL
Reference Manual” and the “Xpress-BCL Javadoc”.

3.3 Evaluation steps for Scenario 3

Use your custom application to develop the model and then call the Xpress-Optimizer libraries.
Available for problems that can be solved with Xpress-Optimizer

Tool for model development: Custom application that calls optimizer libraries.

Type of problem: LP, MIP, QP, MIQP, NLP, MNLP

Tool for model deployment: Optimizer libraries (C++/C, Java, VB, .NET)

See “Getting Started with Xpress”, Part III: ‘Getting started with the Optimizer’, which presents
examples in C language with detailed explanation.

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 10

http://research-rules.fico.com/

Evaluator guide

Further information

• “Xpress-Optimizer Reference Manual”

• For Non-linear programming (NLP,MNLP) see “Xpress-SLP Program Reference Manual”.

3.4 Evaluation steps for Scenario 4

Run a matrix that is readily available in LP or MPS format. Such a model may be executed through
Xpress-IVE, console commands, or applications that call Xpress-Optimizer library functions.

3.4.1 Xpress-IVE

Select File � Open to open file with matrix file (usually files with extensions .mat, .mps, and
.lp). Select Build � Optimize Matrix File to execute problem.

Further information

• Xpress-IVE Help (Select Help � Xpress-IVE Help � Dialogs � Optimizer Dialog).

• “Getting Started with Xpress”, 9.4. ‘Matrix files’

3.4.2 Console commands

At the command prompt, type the following sequence of commands to execute the MPS matrix
in file foliolp.mps:

optimizer
foliolp
readprob
maxim
printsol
quit

You will see output that looks like the following:

>optimizer
Xpress-Optimizer v19.00.00
Hyper capacity, MIP (20 threads), Barrier (20 threads), Network, QP/MIQP
(c) Copyright Fair Isaac Corporation 2008
Using Xpress-Optimizer [C:\XpressMP\bin\xprs.dll]
Enter problem name > foliolp
[xpress C:\] readprob

Reading Problem moselP

Problem Statistics
4 (0 spare) rows
10 (0 spare) structural columns
29 (0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

[xpress C:\] maxim
Presolved problem has: 3 rows 10 cols 19 non-zeros

Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 3.166667 0

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 11

Evaluator guide

5 14.066659 D 0 0 .000000 0
Uncrunching matrix

5 14.066659 D 0 0 .000000 0
Optimal solution found
[xpress C:\] printsol

Problem Statistics
Matrix moselP
Objective *OBJ*

RHS *RHS*
Problem has 4 rows and 10 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 5 iterations
Objective function value is 14.066659
type c/r to continue, anything else to finish >

Rows Section
Number Row At Value Slack Value Dual Value RHS

N 1 *OBJ* BS 14.066659 -14.066659 .000000 .000000
E 2 _R1 EQ 1.000000 .000000 8.000000 1.000000
G 3 _R2 LL .500000 .000000 -5.000000 .500000
L 4 _R3 UL .333333 .000000 23.000000 .333333
type c/r to continue, anything else to finish >

Columns Section
Number Column At Value Input Cost Reduced Cost

C 5 frac(1) UL .300000 5.000000 2.000000
C 6 frac(2) LL .000000 17.000000 -9.000000
C 7 frac(3) BS .200000 26.000000 .000000
C 8 frac(4) LL .000000 12.000000 -14.000000
C 9 frac(5) BS .066667 8.000000 .000000
C 10 frac(6) UL .300000 9.000000 1.000000
C 11 frac(7) LL .000000 7.000000 -1.000000
C 12 frac(8) LL .000000 6.000000 -2.000000
C 13 frac(9) BS .133333 31.000000 .000000
C 14 frac(10) LL .000000 21.000000 -10.000000
[xpress C:\] quit

Further information

Xpress-Optimizer Reference Manual”, Chapter 6: ‘Console and Library functions’.

3.4.3 Xpress-Optimizer library functions

See “Getting Started with Xpress”, Chapter 14: ‘Matrix input’, which presents an example in C
language with detailed explanation.

Evaluate Xpress c©2009 Fair Isaac Corporation. All rights reserved. page 12

	Introduction
	Verify that the Xpress installation was successful
	Decide which Xpress products to evaluate
	Type of problem
	Further information

	Tools for model development and specification
	Further information

	Tools for model deployment
	Further information

	Platform

	Evaluate Xpress
	Evaluation steps for Scenario 1
	Launch Xpress-IVE
	Open Mosel model in Xpress-IVE
	Further information
	Compile and run the Mosel model
	Further information
	Further information
	Work with data in Mosel
	Text files
	Further information
	Spreadsheets and databases
	Further information
	Mosel MIP and quadratic models
	Further information
	Other problem types: Constraint Programming, nonlinear and stochastic models
	Further information
	Deploying Mosel models
	Further information
	Exporting matrix files
	Further information
	Mosel console commands
	Further information
	Other Mosel topics

	Evaluation steps for Scenario 2
	Further information

	Evaluation steps for Scenario 3
	Further information

	Evaluation steps for Scenario 4
	Xpress-IVE
	Further information
	Console commands
	Further information
	Xpress-Optimizer library functions

