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Chapter 1

Introduction

Constraint Programming is an approach to problem solving that has been particularly success-
ful for dealing with nonlinear constraint relations over discrete variables. In the following
we therefore often use ‘Constraint Programming’ or ‘CP’ synonymously to ‘finite domain Con-
straint Programming’.

In the past, CP has been successfully applied to such different problem types as production
scheduling (with or without resource constraints), sequencing and assignment of tasks, work-
force planning and timetabling, frequency assignment, loading and cutting, and also graph
coloring.

The strength of CP lies in its use of a high-level semantics for stating the constraints that pre-
serves the original meaning of the constraint relations (such high-level constraints are referred
to as global constraints). It is not necessary to translate constraints into an arithmetic form—a
process whereby sometimes much of the problem structure is lost. The knowledge about a
problem inherent to the constraints is exploited by the solution algorithms, rendering them
more efficient.

1.1 Xpress-Kalis

Xpress-Kalis, or Kalis for Mosel, provides access to the Artelys Kalis c© Constraint Programming
solver from a Mosel module, kalis. Through Xpress-Kalis, the Constraint Programming func-
tionality of Kalis becomes available in the Mosel environment, allowing the user to formulate
and solve CP models in the Mosel language. Xpress-Kalis combines a finite domain solver
and a solver over continuous (floating point) variables. To aid the formulation of scheduling
problems, the software defines specific aggregate modeling objects representing tasks and re-
sources that will automatically setup certain (implicit) constraint relations and trigger the use
of built-in search strategies specialized for this type of problem. Standard scheduling prob-
lems may thus be defined and solved simply by setting up the corresponding task and resource
objects.

All data handling facilities of the Mosel environment, including data transfer in memory (using
the Mosel IO drivers) and ODBC access to databases (through the module mmodbc) can be used
with kalis without any extra effort.

The Mosel language supports typical programming constructs, such as loops, subroutines, etc.,
that may be required to implement more complicated algorithms. Mosel can also be used as
a platform for combining different solvers, in particular Xpress-Kalis with Xpress-Optimizer for
joint CP – LP/MIP problem solving1. This manual explains the basics on modeling and program-
ming with Mosel and, where necessary, also some more advanced features. For a complete
documentation and a more thorough introduction to its use the reader is referred to the Mo-
sel language reference manual and the Mosel user guide.

1See the Xpress-MP Whitepaper Multiple models and parallel solving with Mosel

1 Xpress-Kalis user guide

http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com/home/secure/documentation
http://www.dashoptimization.com/home/services/publications/support_papers.html


Beyond the functionality readily available from Xpress-Kalis the software also provides a unique
extension mechanism that opens it up to various kinds of additions of new functionality on the
library level that become available within the Mosel language through the Mosel Native Inter-
face (see the Mosel NI reference manual and the Mosel NI user guide). Such user-defined
extensions principally relate to the definition of new constraints and branching schemes.

1.1.1 Note on product versions

The examples in this manual have been developed using the release 2007.1.0 of Xpress-Kalis
with the Xpress-MP Release 2007A beta version of Mosel (1.7.9) and version 1.17.50 of Xpress-
IVE. If they are run with other product versions the output obtained may look different. In
particular, improvements to the algorithms in the CP solver or modifications to the default
settings in Xpress-Kalis may influence the behavior of the constraints or the search. The IVE
interface may also undergo slight changes in future releases as new features are added.

1.2 Software installation

To be able to work with Xpress-Kalis, the Xpress-Mosel software and Xpress-Kalis must be in-
stalled and licensed. Windows users may find it convenient to install (in addition) the graphical
environment Xpress-IVE for working with CP models, but this is not a prerequisite.

Follow the installation instructions provided with the Xpress-MP distribution for installing Mo-
sel (and IVE) on your computer. Then install Xpress-Kalis according to the instructions provided
with the Xpress-Kalis distribution.

1.3 Basic concepts of Constraint Programming

A Constraint Programming (CP) problem is defined by its decision variables with their domains
and constraints over these variables. The problem definition is usually completed by a branch-
ing strategy (also referred to as enumeration or search strategy).

CP makes active use of the concept of variable domains, that is, the set out of which a decision
variable takes its values. In finite domain Constraint Programming these are sets or intervals
of integer numbers.

Each constraint in CP comes with its own (set of) solution algorithm(s), typically based on results
from other areas, such as graph theory. Once a constraint has been established it maintains
its set of variables in a solved state, i.e., its solution algorithm removes any values that it finds
infeasible from the domains of the variables.

The constraints in a CP problem are linked by a mechanism called constraint propagation:
whenever the domain of a variable is modified this triggers a re-evaluation of all constraints
on this variable which in turn may cause modifications to other variables or further reduction
of the domain of the first variable as shown in the example in Figure 1.1 (the original domains
of the variables are reduced by the addition of two constraints; in the last step the effect of
the second constraint is propagated to the first constraint, triggering its re-evaluation).

A CP problem is built up incrementally by adding constraints and bounds on its variables. The
solving of a CP problem starts with the statement of the first constraint—values that violate the
constraint relation are removed from the domains of the involved variables. Since the effect
of a newly added constraint is propagated immediately to the entire CP problem it is generally
not possible to modify or delete this constraint from the problem later on.

In some cases the combination of constraint solving and the propagation mechanism may be
sufficient to prove that a problem instance is infeasible, but most of the time it will be nec-
essary to add an enumeration for reducing all variable domains to a single value (consistent
instantiation or feasible solution) or proving that no such solution exists. In addition it is pos-
sible to define an objective function (or cost function) and search for a feasible solution with
the best objective function value (optimal solution).
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Figure 1.1: Example of constraint propagation, (a) finite domain (discrete) variables, (b) continuous variables.

1.4 Contents of this document

This document gives an introduction to working with Xpress-Kalis. Basic notions of Constraint
Programming are explained but it is expected that the reader has some general understanding
of CP techniques. Since Xpress-Kalis is a module for Xpress-Mosel this document also describes
features of the Mosel language where this appears neccessary to the understanding of the
presented examples.

By means of example models we illustrate the use of the new types defined by Xpress-Kalis,
namely

• Decision variables: finite domain and floating point variables

• Constraints: absolute value and distance, all-different, element, generic binary, linear,
maximum and minimum, occurrence, and logical relations

• Enumeration: predefined branching schemes and user search strategies

• Scheduling: aggregate modeling objects representing tasks and resources

The first chapter deals with the basics of writing CP models with Mosel. It explains the general
structure of CP models and some basics on working with Mosel, including data handling. Then
follows a series of small problems illustrating the use of the different constraint relation types
in Xpress-Kalis. The next chapter introduces in a more systematic way the different possibilities
of defining enumeration strategies, some of which already appear in the preceding model
examples. The chapter dedicated to the topic of scheduling introduces the modeling objects
‘task’ and ‘resource’ that simplify the formulation of scheduling problems.

The last part of this document is concerned with the implementation of Xpress-Kalis exten-
sions. This part is aimed at expert users who wish to implement their own constraint relations
or new branching schemes. The unique extension mechanism of Xpress-Kalis makes new func-
tionality implemented on the library level available within the Mosel language through the
Mosel Native Interface.

Apart from the initial examples, every example is presented as follows:

1. Example description

2. Formulation as a CP model

3. Implementation with Xpress-Kalis: code listing and explanations

4. Results

All example models of this document are included with the set of examples that is provided as
part of the Xpress-Kalis distribution.
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Chapter 2

Modeling basics

This chapter shows how to

• start working with Mosel,

• create and solve a simple CP model with Xpress-Kalis,

• understand and analyze the output produced by the software,

• extend the model with data handling,

• define an objective function, and

• modify the default branching strategy.

2.1 A first model

Consider the following problem: we wish to schedule four meetings A, B, C, and D in three
time slots (numbered 1 to 3). Some meetings are attended by the same persons, meaning that
they may not take place at the same time: meeting A cannot be held at the same time as B or
D, and meeting B cannot take the same time slot as C or D.

More formally, we may write down this problem as follows, where planm (m ∈ MEETINGS =
{A, B, C, D}) denotes the time slot for meeting m—these are the decision variables of our prob-
lem.

∀m ∈ MEETINGS : planm ∈ {1, 2, 3}
planA 6= planB

planA 6= planD

planB 6= planC

planB 6= planD

2.1.1 Implementation with Mosel

The following code listing implements and solves the problem described above.

model "Meeting"
uses "kalis"

declarations
MEETINGS = {’A’,’B’,’C’,’D’} ! Set of meetings
TIME = 1..3 ! Set of time slots
plan: array(MEETINGS) of cpvar ! Time slot per meeting
end-declarations

forall(m in MEETINGS) setdomain(plan(m), TIME)
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! Respect incompatibilities
plan(’A’) <> plan(’B’)
plan(’A’) <> plan(’D’)
plan(’B’) <> plan(’C’)
plan(’B’) <> plan(’D’)

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(m in MEETINGS)
writeln("Meeting ", m, ": ", getsol(plan(m)))

end-model

This Mosel model is saved as a text file with the name meeting.mos. Let us now take a closer
look at what we have just written.

2.1.1.1 General structure

Every Mosel program starts with the keyword model, followed by a model name chosen by the
user. The Mosel program is terminated with the keyword end-model.

As Mosel is itself not a solver, we specify that the Kalis constraint solver is to be used with the
statement

uses "kalis"

at the begin of the model.

All objects must be declared in a declarations section, unless they are defined unambigu-
ously through an assignment. For example, i:= 1 defines i as an integer and assigns to it the
value 1. There may be several such declarations sections at different places in a model.

In the present case, we define two sets, and one array:

• MEETINGS is a set of strings.

• TIME is a so-called range set—i.e., a set of consecutive integers (here: from 1 to 3).

• plan is an array of decision variables of type cpvar (finite domain CP variables; a second
decision variable type of Xpress-Kalis is cpfloatvar for continuous variables), indexed
by the set MEETINGS.

The model then defines the domains of the variables using the Xpress-Kalis procedure set-
domain. The decision variables are indeed created at their declaration with a large default
domain and setdomain reduces these domains to the intersection of the default domain with
the indicated values. As in the mathematical model, we use a forall loop to enumerate all
the indices in the set MEETINGS.

This is followed by the statement of the constraints, in this model we have four disequality
constraints.

2.1.1.2 Solving and solution output

With the function cp_find_next_sol, we call Kalis to solve the problem (find a feasible as-
signment of values to all decision variables). We test the return value of this function: if no
solution is found it returns false and we stop the model execution at this point (by calling
the Mosel procedure exit), otherwise we print out the solution.
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To solve the problem Xpress-Kalis uses its built-in default search strategies. We shall see later
how to modify these strategies.

The solution for a CP variable is obtained with the function getsol. To write several items on
a single line use write instead of writeln for printing the output.

2.1.1.3 Formatting

Indentation, spaces, and empty lines in our model have been added to increase readability.
They are skipped by Mosel.

Line breaks: It is possible to place several statements on a single line, separating them by
semicolons, as such:

plan(’A’) <> plan(’B’); plan(’A’) <> plan(’D’)

But since there are no special ‘line end’ or continuation characters, every line of a statement
that continues over several lines must end with an operator (+, >=, etc.) or characters like ‘,’
that make it obvious that the statement is not terminated.

As shown in the example, single line comments in Mosel are preceded by !. Multiple line
comments start with (! and terminate with !).

2.1.2 Running the model

You may choose among three different methods for running your Mosel models:

1. From the Mosel command line: this method can be used on all platforms for which Mo-
sel is available. It is especially useful if you wish to execute a (batch) sequence of model
runs—for instance, with different parameter settings. The full Mosel functionality, in-
cluding its debugger, is accessible in this run mode.

2. Within the graphical environment Xpress-IVE: available to Windows users. IVE is a com-
plete modeling and optimization development environment with a built-in text editor
for working with Mosel models and a number of solution and search tree displays that
help analyze models and solution algorithms in the development phase. Models can be
modified and re-run interactively.

3. From within an application program: Mosel models may be executed and accessed from
application programs (C/C++, Java, VB, .NET). This functionality is typically used for the
deployment of Mosel models, integrating them into a company’s information system.

In this manual we shall use the first two methods for running the models we develop. For
further detail on embedding models into application programs the user is referred to the Mosel
user guide.

2.1.2.1 Working from the Mosel command line

When you have entered the complete model into the file meeting.mos, we can proceed to
the solution to our problem. Three stages are required:

1. Compiling meeting.mos to a compiled file, meeting.bim

2. Loading the compiled file meeting.bim

3. Running the model we have just loaded.

We start Mosel at the command prompt, and type the following sequence of commands
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mosel
compile meeting
load meeting
run
quit

which will compile, load and run the model. We will see output something like that below,
where we have highlighted Mosel’s output in bold face.

mosel

** Xpress-Mosel **
(c) Copyright Fair Isaac Corporation 2008
>compile meeting
Compiling ’meeting’...
>load meeting
>run
Meeting A: 1
Meeting B: 2
Meeting C: 1
Meeting D: 3
Returned value: 0
>quit
Exiting.

Since the compile/load/run sequence is so often used, it can be abbreviated to

exec meeting

The same steps may be done immediately from the command line:

mosel -c "compile meeting; load meeting; run"

or

mosel -c "exec meeting"

The -c option is followed by a list of commands enclosed in double quotes.

2.1.2.2 Using IVE

Figure 2.1: IVE after opening a model
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To execute the model file meeting.mos with IVE you need to carry out the following steps.

• Start up IVE: if you have followed the standard installation procedure for Xpress-IVE, start
the program by double clicking the icon on the desktop or selecting Start � Programs �
Xpress-MP � Xpress-IVE. Otherwise, you may also start up IVE by typing ive in a DOS
command prompt or by double clicking a model file (file with extension .mos).

• Open the model file by choosing File � Open. The model source is then displayed in the
central window (the IVE Editor).

• Click the Run button or, alternatively, choose Build � Run.

The Build pane at the bottom of the workspace displays the model execution status messages
from Mosel. If syntax errors are found in the model they are displayed here, with details of the
line and character position where the error was detected and a description of the problem, if
available. Clicking on the error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace displays
any output generated by the program. IVE will also provide a graphical representation of
the CP search tree (CP search pane) and display summary problem statistics (CP stats pane).
IVE also allows the user to draw graphs by embedding subroutines in Mosel models (see the
documentation of module mmive for further detail).

IVE makes all information about the solution available through the Entities pane in the left
hand window. By expanding the list of decision variables in this pane and hovering over one
with the mouse pointer, its solution value is displayed.

Figure 2.2: IVE after model execution

2.1.2.3 Debugging a model

A first step for debugging a model certainly is to add additional output. In our model, we
could, for instance, print out the definition of the decision variables by adding the line

writeln(plan)

after the definition of the variables’ domains, or even print out the complete problem defini-
tion with the procedure cp_show_prob. To obtain a more easily readable output for debug-

Modeling basics 9 Xpress-Kalis user guide



ging the user may give names to the decision variables of his problem. For example:

forall(m in MEETINGS) setname(plan(m), "Meeting "+m)

Notice that we have used the ’+’ sign to concatenate strings.

Calling the procedure cp_show_stats will display summary statistics of the CP solving.

To obtain detailed information about run-time errors with the command line version models
need to be compiled with the flag -g, for example,

mosel -c "exec -g meeting"

For using the Mosel debugger (please see the Mosel language reference manual for further
detail) the compilation flag -G needs to be used instead.

IVE by default compiles models in debug mode and re-compiles them correspondingly if the

debugger is started (by clicking the button or via the Debug menu).

2.2 Data input from file

We now extend the previous example in order to use it with different data sets. If we wish to
run a model with different data sets, it would be impractical and error-prone having to edit
the model file with every change of the data set. Instead, we are now going to see how to
read data from a text file.

This is a description of the problem we want to solve (example taken from Section 14.4 of the
book ‘Applications of optimization with Xpress-MP’).

A technical university needs to schedule the exams at the end of the term for a course with
several optional modules. Every exam lasts two hours. Two days have been reserved for the
exams with the following time periods: 8:00–10:00, 10:15–12:15, 14:00–16:00, and 16:15–18:15,
resulting in a total of eight time periods. For every exam the set of incompatible exams that
may not take place at the same time because they have to be taken by the same students is
shown in Table 2.1.

Table 2.1: Incompatibilities between different exams

DA NA C++ SE PM J GMA LP MP S DSE

DA – X – – X – X – – X X

NA X – – – X – X – – X X

C++ – – – X X X X – X X X

SE – – X – X X X – – X X

PM X X X X – X X X X X X

J – – X X X – X – X X X

GMA X X X X X X – X X X X

LP – – – – X – X – – X X

MP – – X – X X X – – X X

S X X X X X X X X X – X

DSE X X X X X X X X X X –

2.2.1 Model formulation

The CP model has the same structure as the previous one, with the difference that we now in-
troduce a data array INCOMP indicating incompatible pairs of exams and define the disequality
constraints in a loop instead of writing them out one by one.

∀e ∈ EXAM : plane ∈ {1, . . . , 8}
∀d, e ∈ EXAM, INCOMPde = 1 : pland 6= plane
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2.2.2 Implementation

The Mosel model now looks as follows.

model "I-4 Scheduling exams (CP)"
uses "kalis"

declarations
EXAM = 1..11 ! Set of exams
TIME = 1..8 ! Set of time slots
INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams
EXAMNAME: array(EXAM) of string

plan: array(EXAM) of cpvar ! Time slot for exam
end-declarations

EXAMNAME:: (1..11)["DA","NA","C++","SE","PM","J","GMA","LP","MP","S","DSE"]

initializations from ’Data/i4exam.dat’
INCOMP
end-initializations

forall(e in EXAM) setdomain(plan(e), TIME)

! Respect incompatibilities
forall(d,e in EXAM | d<e and INCOMP(d,e)=1) plan(d) <> plan(e)

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(t in TIME) do
write("Slot ", t, ": ")
forall(e in EXAM)
if (getsol(plan(e))=t) then write(EXAMNAME(e)," "); end-if
writeln
end-do

end-model

The values of the array INCOMP are read in from the file i4exam.dat in an initializations
block. In the definition of the disequality constraints we check the value of the corresponding
array entry—conditions on the indices for loops, sums, and other aggregate operators are
marked by a vertical bar.

The data file has the following contents.

INCOMP: [0 1 0 0 1 0 1 0 0 1 1
1 0 0 0 1 0 1 0 0 1 1
0 0 0 1 1 1 1 0 1 1 1
0 0 1 0 1 1 1 0 0 1 1
1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 0 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1 1
0 0 0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0]

2.2.3 Results

The model prints out the following results. Only the first seven time slots are used for schedul-
ing exams.

Slot 1: DA C++ LP
Slot 2: NA SE MP
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Slot 3: PM
Slot 4: GMA
Slot 5: S
Slot 6: DSE
Slot 7: J
Slot 8:

2.2.4 Data-driven model

In the model shown above, we have read the incompatibility data from a file but part of the
data (namely the index set EXAM and the number of time slots available) are still hard-coded
in the model. To obtain a fully flexible model that can be run with arbitrary data sets we need
to move all data definitions from the model to the data file.

The new data file i4exam2.dat not only defines the data entries, it also defines the index
tuples for the array INCOMP. Every data entry is preceded by its index tuple (in brackets).
There is no need to write out explicitly the contents of the set EXAM—Mosel will automatically
populate this set with the index values read in for the array INCOMP. In addition, the data file
now contains a value for the number of time periods NT .

INCOMP: [("DA" "NA") 1 ("DA" "PM") 1 ("DA" "GMA") 1 ("DA" "S") 1 ("DA" "DSE") 1
("NA" "DA") 1 ("NA" "PM") 1 ("NA" "GMA") 1 ("NA" "S") 1 ("NA" "DSE") 1
("C++" "SE") 1 ("C++" "PM") 1 ("C++" "J") 1 ("C++" "GMA") 1

("C++" "MP") 1 ("C++" "S") 1 ("C++" "DSE") 1
("SE" "C++") 1 ("SE" "PM") 1 ("SE" "J") 1 ("SE" "GMA") 1 ("SE" "S") 1

("SE" "DSE") 1
("PM" "DA") 1 ("PM" "NA") 1 ("PM" "C++") 1 ("PM" "SE") 1 ("PM" "J") 1

("PM" "GMA") 1 ("PM" "LP") 1 ("PM" "MP") 1 ("PM" "S") 1 ("PM" "DSE") 1
("J" "C++") 1 ("J" "SE") 1 ("J" "PM") 1 ("J" "GMA") 1 ("J" "MP") 1

("J" "S") 1 ("J" "DSE") 1
("GMA" "DA") 1 ("GMA" "NA") 1 ("GMA" "C++") 1 ("GMA" "SE") 1

("GMA" "PM") 1 ("GMA" "J") 1 ("GMA" "LP") 1 ("GMA" "MP") 1
("GMA" "S") 1 ("GMA" "DSE") 1

("LP" "PM") 1 ("LP" "GMA") 1 ("LP" "S") 1 ("LP" "DSE") 1
("MP" "C++") 1 ("MP" "PM") 1 ("MP" "J") 1 ("MP" "GMA") 1 ("MP" "S") 1

("MP" "DSE") 1
("S" "DA") 1 ("S" "NA") 1 ("S" "C++") 1 ("S" "SE") 1 ("S" "PM") 1

("S" "J") 1 ("S" "GMA") 1 ("S" "LP") 1 ("S" "MP") 1 ("S" "DSE") 1
("DSE" "DA") 1 ("DSE" "NA") 1 ("DSE" "C++") 1 ("DSE" "SE") 1

("DSE" "PM") 1 ("DSE" "J") 1 ("DSE" "GMA") 1 ("DSE" "LP") 1
("DSE" "MP") 1 ("DSE" "S") 1 ]

NT: 8

Our model also needs to undergo a few changes: the sets EXAM and TIME are now declared by
stating their types, which turns them into dynamic sets (as opposed to their previous constant
definition by stating their values). As a consequence, the array of decision variables plan is de-
clared before the indexing set EXAM is known and Mosel creates this array as a dynamic array,
meaning that the declaration results in an empty array and its elements need to be created
explicitly (using the Mosel procedure create) once the indices are known. Before creating the
variables, we modify the default bounds of Xpress-Kalis to the values corresponding to the set
TIME, thus replacing the call to setdomain.

The declaration of array INCOMP results in a dynamic array as well. The initializations
block will assign values to just those entries that are listed in the data file (with the previous,
constant declaration, all entries were defined). This makes it possible to reformulate the con-
dition on the loop defining the disequality constraints: we now simply test for the existence of
an entry instead of comparing all data values. With larger data sets, using the keyword exists
may greatly reduce the execution time of loops involving sparse arrays (multidimensional data
arrays with few entries different from 0).

model "I-4 Scheduling exams (CP) - 2"
uses "kalis"

declarations
NT: integer ! Number of time slots
EXAM: set of string ! Set of exams
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TIME: set of integer ! Set of time slots
INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams

plan: array(EXAM) of cpvar ! Time slot for exam
end-declarations

initializations from ’Data/i4exam2.dat’
INCOMP NT
end-initializations

TIME:= 1..NT

setparam("default_lb", 1); setparam("default_ub", NT)
forall(e in EXAM) create(plan(e))

! Respect incompatibilities
forall(d,e in EXAM | exists(INCOMP(d,e)) and d<e) plan(d) <> plan(e)

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(t in TIME) do
write("Slot ", t, ": ")
forall(e in EXAM)
if (getsol(plan(e))=t) then write(e," "); end-if
writeln
end-do

end-model

Running this fully data-driven model produces the same solution as the previous version.

An alternative to the explicit creation of the decision variables plan is to move their declara-
tion after the initialization of the data as shown in the code extract below. In this case, it
is important to finalize the indexing set EXAM, which turns it into a constant set with its
current contents and allows Mosel to create any subsequently declared arrays indexed by this
set as static arrays.

declarations
NT: integer ! Number of time slots
EXAM: set of string ! Set of exams
TIME: set of integer ! Set of time slots
INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams
end-declarations

initializations from ’Data/i4exam2.dat’
INCOMP NT
end-initializations

finalize(EXAM)
TIME:= 1..NT

setparam("default_lb", 1); setparam("default_ub", NT)
declarations
plan: array(EXAM) of cpvar ! Time slot for exam
end-declarations

2.3 Optimization and enumeration

2.3.1 Optimization

Since running our model i4exam_ka.mos in Section 2.2.2 has produced a solution to the prob-
lem that does not use all time slots one might wonder which is the minimum number of time
slots that are required for this problem. This question leads us to the formulation of an opti-
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mization problem.

We introduce a new decision variable numslot over the same value range as the plani variables
and add the constraints that this variable is greater or equal to every plani variable. A sim-
plified formulation is to say that the variable numslot equals the maximum value of all plani

variables.

The objective then is to minimize the value of numslot, which results in the following model.

model "I-4 Scheduling exams (CP) - 3"
uses "kalis"

declarations
NT: integer ! Number of time slots
EXAM: set of string ! Set of exams
TIME: set of integer ! Set of time slots
INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams

plan: array(EXAM) of cpvar ! Time slot for exam
numslot: cpvar ! Number of time slots used
end-declarations

initializations from ’Data/i4exam2.dat’
INCOMP NT
end-initializations

finalize(EXAM)
TIME:= 1..NT

setparam("default_lb", 1); setparam("default_ub", NT)
forall(e in EXAM) create(plan(e))

! Respect incompatibilities
forall(d,e in EXAM | exists(INCOMP(d,e)) and d<e) plan(d) <> plan(e)

! Calculate number of time slots used
numslot = maximum(plan)

! Solve the problem
if not(cp_minimize(numslot)) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(t in TIME) do
write("Slot ", t, ": ")
forall(e in EXAM)
if (getsol(plan(e))=t) then write(e," "); end-if
writeln
end-do

end-model

Instead of cp_find_next_sol we now use cp_minimize with the objective function variable
numslot as function argument.

This program also generates a solution using seven time slots, thus proving that this is the least
number of slots required to produce a feasible schedule.

2.3.2 Enumeration

When comparing the problem statistics in IVE’s CP stats pane or those obtained by adding a
call to cp_show_stats to the end of the different versions of our model, we can see that
switching from finding a feasible solution to optimization considerably increases the number
of nodes explored by the CP solver.

So far we have simply relied on the default enumeration strategies of Xpress-Kalis. We shall
now try to see whether we can reduce the number of nodes explored and hence shorten the
time spent by the search for proving optimality.
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The default strategy of Kalis for enumerating finite domain variables corresponds to adding
the statement

cp_set_branching(assign_var(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX))

before the start of the search. assign_var denotes the branching scheme (‘a branch is formed
by assigning the next chosen value to the branching variable’), KALIS_SMALLEST_DOMAIN is
the variable selection strategy (‘choose the variable with the smallest number of values re-
maining in its domain’), and KALIS_MIN_TO_MAX the value selection strategy (‘from smallest
to largest value’).

Since we are minimizing the number of time slots, enumeration starting with the smallest value
seems to be a good idea. We therefore keep the default value selection criterion. However,
we may try to change the variable selection heuristic: replacing KALIS_SMALLEST_DOMAIN by
KALIS_MAX_DEGREE results in a reduction of the tree size and search time to less than half of
its default size.

Here follows once more the complete model.

model "I-4 Scheduling exams (CP) - 4"
uses "kalis"

declarations
NT: integer ! Number of time slots
EXAM: set of string ! Set of exams
TIME: set of integer ! Set of time slots
INCOMP: array(EXAM,EXAM) of integer ! Incompatibility between exams

plan: array(EXAM) of cpvar ! Time slot for exam
numslot: cpvar ! Number of time slots used
end-declarations

initializations from ’Data/i4exam2.dat’
INCOMP NT
end-initializations

finalize(EXAM)
TIME:= 1..NT

setparam("default_lb", 1); setparam("default_ub", NT)
forall(e in EXAM) create(plan(e))

! Respect incompatibilities
forall(d,e in EXAM | exists(INCOMP(d,e)) and d<e) plan(d) <> plan(e)

! Calculate number of time slots used
numslot = maximum(plan)

! Setting parameters of the enumeration
cp_set_branching(assign_var(KALIS_MAX_DEGREE, KALIS_MIN_TO_MAX))

! Solve the problem
if not(cp_minimize(numslot)) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(t in TIME) do
write("Slot ", t, ": ")
forall(e in EXAM)
if (getsol(plan(e))=t) then write(e," "); end-if
writeln
end-do

cp_show_stats

end-model

NB: In the model versions without optimization we may try to obtain a more evenly dis-
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Figure 2.3: Search tree displays in IVE (left: default strategy, right: KALIS_MIN_DEGREE strategy for variable choice)

tributed schedule by choosing values randomly, that is, by using the value selection criterion
KALIS_RANDOM_VALUE instead of KALIS_MIN_TO_MAX.

Further detail on the definition of branching strategies is given in Chapter 4.

2.3.2.1 IVE search tree display

With IVE, the difference between the two search trees becomes easily visible through the
graphical display of the trees in the CP search pane (see Figure 2.3). Feasible solutions are
represented by green squares, the optimal solution to an optimization problem is marked by
a slightly larger square. As can be seen, with both strategies only a single solution is found.
When hovering over the nodes in the search tree display detailed information including the
node numbers and the name of the branching variables appears in pop-up boxes. It is also pos-
sible to highlight all nodes that branch on a given variable by indicating the variable’s name in
the selection box above the tree display. To obtain a more meaningful display in IVE, we may
assign names to the decision variables using the prcedure setname (see Section 2.1.2.3).

2.4 Continuous variables

All through this chapter we have worked with the decision variable type cpvar (discrete vari-
ables). A second variable type in Xpress-Kalis are continuous variables (type cpfloatvar).
Such variables are used in a similar way to what we have seen above for discrete variables, for
example:

setparam("DEFAULT_CONTINUOUS_LB", 0)
setparam("DEFAULT_CONTINUOUS_UB", 10)

declarations
x,y: cpfloatvar
end-declarations

x >= y ! Define a constraint
! Retrieve information about continuous variables

writeln(getname(x), ":", getsol(x))
writeln(getlb(y), " ", getub(y))

A few differences in the use of the two decision variable types exist:

• Constraints involving cpfloatvar cannot be strict inequalities (that is, only the operators
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<=, >=, and = may be used).

• Most global constraints (see Chapter 3) only apply to cpvar.

• Search strategies enumerating the values in a variable’s domain can only be used with
cpvar (see Chapter 4).

• Access functions for enumerating domain values such getnext are not applicable to
cpfloatvar.
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Chapter 3

Constraints

This chapter contains a collection of examples demonstrating the use of Xpress-Kalis for solving
different types of (optimization) problems. The first section shows different ways of defining
and posting constraints for simple linear constraints. The following sections each introduce
a new constraint type. Since most examples use a combination of different constraints, the
following list may help in finding examples of the use of a certain constraint type quickly.

• arithmetic: linear disequality: 2.1 (meeting.mos), 2.2 (exam*.mos), 3.7 (persplan.mos);
linear equality/inequality: 3.5 (b4seq*_ka.mos), 3.6 (i1assign_ka.mos), 3.8 (b5paint*_-
ka.mos), 3.9 (j5tax_ka.mos), 4.4 (i1assign_ka.mos), 5.2 (b1stadium_ka.mos); non-
linear: 3.2

• all_different: 3.3 (sudoku_ka.mos), 3.5 (b4seq_ka.mos), 3.8 (b5paint*_ka.mos),
3.4 (freqasgn.mos), 3.7 (persplan.mos), 3.11 (eulerkn*.mos), 4.4 (i1assign_ka.mos)

• abs / distance: 3.4 (freqasgn.mos)

• cumulative: 5.4 (d4backup2_ka.mos)

• cycle: 3.10 (b5paint3_ka.mos)

• disjunctive: 3.5 (b4seq2_ka.mos)

• element: 3.5 (b4seq_ka.mos), 3.6 (a4sugar_ka.mos), 3.9 (j5tax_ka.mos),
3.8 (b5paint_ka.mos), 4.4 (i1assign_ka.mos), 2D: 3.8 (b5paint2_ka.mos)

• distribute / occurrence: 3.6 (a4sugar_ka.mos), 3.7 (persplan.mos),
3.9 (j5tax_ka.mos)

• maximum / minimum: 2.3 (exam3.mos, exam4.mos), 3.5 (b4seq2_ka.mos),
3.4 (freqasgn.mos), 4.4 (i1assign_ka.mos)

• implies / equiv: 3.8 (b5paint_ka.mos), 3.7 (persplan.mos), 3.9 (j5tax_ka.mos),
3.11 (eulerkn2.mos)

• generic binary: 3.11 (eulerkn.mos)

3.1 Constraint handling

In this section we shall work once more with the introductory problem of scheduling meetings
from Section 2.1. This model only contains simple arithmetic constraints over discrete variables.
However, all that is said here equally applies to all other constraint types of Xpress-Kalis, in-
cluding constraint relations over continuous decision variables (that is, variables of the type
cpfloatvar).

We now wish to state a few more constraints for this problem.
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1. Meeting B must take place before day 3.

2. Meeting D cannot take place on day 2.

3. Meeting A must be scheduled on day 1.

3.1.1 Model formulation

The three additional constraints translate into simple (unary) linear constraints. We complete
our model as follows:

∀m ∈ MEETINGS : planm ∈ {1, 2, 3}
planB ≤ 2

planD 6= 2

planA = 1

planA 6= planB

planA 6= planD

planB 6= planC

planB 6= planD

3.1.2 Implementation

The Mosel implementation of the new constraints is quite straightforward.

model "Meeting (2)"
uses "kalis"

declarations
MEETINGS = {’A’,’B’,’C’,’D’} ! Set of meetings
TIME = 1..3 ! Set of time slots
plan: array(MEETINGS) of cpvar ! Time slot per meeting
end-declarations

forall(m in MEETINGS) do
setdomain(plan(m), TIME)
setname(plan(m), "plan"+m)
end-do
writeln("Original domains: ", plan)

plan(’B’) <= 2 ! Meeting B before day 3
plan(’D’) <> 2 ! Meeting D not on day 2
plan(’A’) = 1 ! Meeting A on day 1
writeln("With constraints: ", plan)

! Respect incompatibilities
plan(’A’) <> plan(’B’)
plan(’A’) <> plan(’D’)
plan(’B’) <> plan(’C’)
plan(’B’) <> plan(’D’)

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(m in MEETINGS)
writeln("Meeting ", m, ": ", getsol(plan(m)))

end-model

3.1.3 Results

As the reader may have noticed, we have added printout of the variables planm at several
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places in the model. The output generated by the execution of this model therefore is the
following.

Original domains: [planA[1..3],planB[1..3],planC[1..3],planD[1..3]]
With constraints: [planA[1],planB[1..2],planC[1..3],planD[1,3]]
Meeting A: 1
Meeting B: 2
Meeting C: 1
Meeting D: 3

As can be seen from this output, immediately after stating the constraints, the domains of the
concerned variables have been reduced. The constraints are immediately and automatically
posted to the solver and their effects are propagated to the whole problem.

3.1.4 Naming constraints

Sometimes it may be necessary to access constraints later on, after their definition, in particular
if they are to become part of logic relations or if they are to be branched on (typically the case
for disjunctive constraints). To this aim Xpress-Kalis defines a new type, cpctr, that can be
used to declare constraints giving them a name that can used after their definition. We define
constraints by assigning to them a constraint relation.

Naming constraints has the secondary effect that the constraints are not automatically posted
to the solver. This needs to be done by writing the name of a constraint as a statement on its
own (after its definition) as shown in the following model.

model "Meeting (3)"
uses "kalis"

declarations
MEETINGS = {’A’,’B’,’C’,’D’} ! Set of meetings
TIME = 1..3 ! Set of time slots
plan: array(MEETINGS) of cpvar ! Time slot per meeting
Ctr: array(range) of cpctr
end-declarations

forall(m in MEETINGS) do
setdomain(plan(m), TIME)
setname(plan(m), "plan"+m)
end-do
writeln("Original domains: ", plan)

Ctr(1):= plan(’B’) <= 2 ! Meeting B before day 3
Ctr(2):= plan(’D’) <> 2 ! Meeting D not on day 2
Ctr(3):= plan(’A’) = 1 ! Meeting A on day 1
writeln("After definition of constraints:\n ", plan)

forall(i in 1..3) Ctr(i)
writeln("After posting of constraints:\n ", plan)

! Respect incompatibilities
plan(’A’) <> plan(’B’)
plan(’A’) <> plan(’D’)
plan(’B’) <> plan(’C’)
plan(’B’) <> plan(’D’)

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
forall(m in MEETINGS) writeln("Meeting ", m, ": ", getsol(plan(m)))

end-model

From the output produced by this model, we can see that the mere definition of named con-
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straints does not have any effect on the domains of the variables (the constraints are defined in
Mosel but not yet sent to the Kalis solver). Only after stating the names of the constraints (that
is, sending them to the solver) we obtain the same domain reductions as with the previous
version of the model.

Original domains: [planA[1..3],planB[1..3],planC[1..3],planD[1..3]]
After definition of constraints:
[planA[1..3],planB[1..3],planC[1..3],planD[1..3]]
After posting of constraints:
[planA[1],planB[1..2],planC[1..3],planD[1,3]]
Meeting A: 1
Meeting B: 2
Meeting C: 1
Meeting D: 3

3.1.5 Explicit posting of constraints

In all previous examples, we have silently assumed that posting the constraints does not lead
to a failure (infeasibility detected by the solver). In practice, this may not always be a reason-
able assumption. Xpress-Kalis therefore defines the function cp_post that explicitly posts a
constraint to the solver and returns the status of the constraint system after its addition (true
for feasible and false for infeasible). This functionality may be of special interest for dealing
with over-constrained problems to stop the addition of constraints once an infeasibility has
been detected and to report back to the user which constraint has made the problem infeasi-
ble.

To use the explicit posting with cp_post, in the previous model we replace the line

forall(i in 1..3) Ctr(i)

with the following code.

forall(i in 1..3)
if not cp_post(Ctr(i)) then
writeln("Constraint ", i, " makes problem infeasible")
exit(1)
end-if

The return value of the every constraint posting is checked and the program is stopped if the
addition of a constraint leads to an infeasibility.

The output produced by this model version is exactly the same as what we have seen in the
previous section.

3.1.6 Explicit constraint propagation

The behavior of constraints can also be influenced in a different way. If we turn automated
constraint propagation off,

setparam("AUTO_PROPAGATE", false)

then constraints posted to the solver are not propagated. In this case, constraint propagation
will only be launched by a call to cp_propagate or by starting the enumeration (subroutines
cp_find_next_sol, cp_minimize, etc.).

3.2 Arithmetic constraints

In the previous sections we have already seen several examples of linear constraints over fi-
nite domain variables. Linear constraints may be regarded as a special case of arithmetic con-
straints, that is, equations or inequality relations involving expressions over decision variables
formed with the operators +, -, /, *, ,̂ sum, prod and arithmetic functions like abs or ln. For
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a complete list of arithmetic functions supported by the solver the reader is refered to the
Xpress-Kalis reference manual.

Arithmetic constraints in Xpress-Kalis may be defined over finite domain variables (type cpvar),
continuous variables (type cpfloatvar), or mixtures of both. Notice, however, that arithmetic
constraints involving continuous variables cannot be defined as strict inequalities, that means,
only the relational operators >=, <=, and = may be used.

Here are a few examples of (nonlinear) arithmetic constraints that may be defined with Xpress-
Kalis.

model "Nonlinear constraints"
uses "kalis"

setparam("DEFAULT_LB", 0)
setparam("DEFAULT_UB", 5)
setparam("DEFAULT_CONTINUOUS_LB", -10)
setparam("DEFAULT_CONTINUOUS_UB", 10)

declarations
a,b,c: cpvar
x,y,z: cpfloatvar
end-declarations

x = ln(y)
y = abs(z)
x*y <= z^2
z = -a/b
a*b*c^3 >= 150

while (cp_find_next_sol)
writeln("a:", getsol(a), ", b:", getsol(b), ", c:", getsol(c),

", x:", getsol(x), ", y:", getsol(y), ", z:", getsol(z))

end-model

3.3 all_different: Sudoku

Sudoku puzzles, originating from Japan, have recently made their appearance in many western
newspapers. The idea of these puzzles is to complete a given, partially filled 9 × 9 board with
the numbers 1 to 9 in such a way that no line, column, or 3 × 3 subsquare contains a number
more than once. The tables 3.1 and 3.2 show two instances of such puzzles. Whilst sometimes
tricky to solve for a human, these puzzles lend themselves to solving by a CP approach.

Table 3.1: Sudoku (‘The Times’, 26 January, 2005)

A B C D E F G H I

1 4 3 6

2 6 5 7

3 8 7 3

4 5 1 3 7

5 1 2 8 4

6 9 7 5 2

7 4 5 9

8 9 4 5

9 3 4 6

3.3.1 Model formulation

As in the examples, we denote the columns of the board by the set XS = {A, B, . . . , I} and the
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Table 3.2: Sudoku (‘The Guardian’, 29 July, 2005)

A B C D E F G H I

1 8 3

2 5 4

3 2 7 6

4 1 5

5 3 9

6 6 4

7 7 2 3

8 4 1

9 9 8

rows by YS = {1, 2, . . . , 9}. For every x in XS and y in YS we define a decision variable vxy taking
as its value the number at the position (x, y).

The only constraints in this problem are
(1) all numbers in a row must be different,
(2) all numbers in a column must be different,
(3) all numbers in a 3 × 3 subsquare must be different.

These constraints can be stated with Xpress-Kalis’s all_different relation. This constraint
ensures that all variables in the relation take different values.

∀x ∈ XS, y ∈ YS : vxy ∈ {1. , . . . , 9}
∀x ∈ XS : all-different(vx1, . . . , vx9)

∀y ∈ YS : all-different(vAy , . . . , vIy)

all-different(vA1, . . . , vC3)

all-different(vA4, . . . , vC6)

all-different(vA7, . . . , vC9)

all-different(vD1, . . . , vF3)

all-different(vD4, . . . , vF6)

all-different(vD7, . . . , vF9)

all-different(vG1, . . . , vI3)

all-different(vG4, . . . , vI6)

all-different(vG7, . . . , vI9)

In addition, certain variables vxy are fixed to the given values.

3.3.2 Implementation

The Mosel implementation for the Sudoku puzzle in Table 3.2 looks as follows.

model "sudoku (CP)"
uses "kalis"

forward procedure print_solution(numsol: integer)

setparam("default_lb", 1)
setparam("default_ub", 9) ! Default variable bounds

declarations
XS = {’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’} ! Columns
YS = 1..9 ! Rows
v: array(XS,YS) of cpvar ! Number assigned to cell (x,y)
end-declarations
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! Data from "The Guardian", 29 July, 2005. http://www.guardian.co.uk/sudoku
v(’A’,1)=8; v(’F’,1)=3
v(’B’,2)=5; v(’G’,2)=4
v(’A’,3)=2; v(’E’,3)=7; v(’H’,3)=6
v(’D’,4)=1; v(’I’,4)=5
v(’C’,5)=3; v(’G’,5)=9
v(’A’,6)=6; v(’F’,6)=4
v(’B’,7)=7; v(’E’,7)=2; v(’I’,7)=3
v(’C’,8)=4; v(’H’,8)=1
v(’D’,9)=9; v(’I’,9)=8

! All-different values in rows
forall(y in YS) all_different(union(x in XS) {v(x,y)})

! All-different values in columns
forall(x in XS) all_different(union(y in YS) {v(x,y)})

! All-different values in 3x3 squares
forall(s in {{’A’,’B’,’C’},{’D’,’E’,’F’},{’G’,’H’,’I’}}, i in 0..2)
all_different(union(x in s, y in {1+3*i,2+3*i,3+3*i}) {v(x,y)})

! Solve the problem
solct:= 0
while (cp_find_next_sol) do
solct+=1
print_solution(solct)
end-do

writeln("Number of solutions: ", solct)
writeln("Time spent in enumeration: ", getparam("COMPUTATION_TIME"), "sec")
writeln("Number of nodes: ", getparam("NODES"))

!****************************************************************
! Solution printing
procedure print_solution(numsol: integer)
writeln(getparam("COMPUTATION_TIME"), "sec: Solution ", numsol)
writeln(" A B C D E F G H I")
forall(y in YS) do
write(y, ": ")
forall(x in XS)
write(getsol(v(x,y)), if(x in {’C’,’F’}, " | ", " "))
writeln
if y mod 3 = 0 then
writeln(" ---------------------")
end-if
end-do
end-procedure

end-model

!****************************************************************

In this model, the call to cp_find_next_sol is embedded in a while loop to search all feasible
solutions. At every loop execution the procedure print_solution is called to print out the
solution found nicely formatted. Subroutines in Mosel may have declarations blocks for
local declarations and they may take any number of arguments. Since, in our model, the call
to the procedure occurs before its definition, we need to declare it before the first call using
the keyword forward.

For selecting the information that is to be printed by the subroutine we use two different ver-
sions of Mosel’s if statement: the inline if and if-then that includes a block of statements.

At the end of the model run we retrieve from the solver the run time measurement (parameter
COMPUTATION_TIME) and the number of nodes explored by the search (parameter NODES).

To obtain a complete list of parameters defined by Xpress-Kalis type the command

mosel -c "exam -p kalis"
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(for a listing of the complete functionality of Xpress-Kalis leave out the flag -p). With IVE,

select Modules � List available modules or alternatively, click on the button .

3.3.3 Results

The model shown above generates the following output; this puzzle has only one solution, as
is usually the case for Sudoku puzzles.

0.16sec: Solution 1
A B C D E F G H I

1: 8 6 9 | 2 4 3 | 1 5 7
2: 3 5 7 | 6 1 9 | 4 8 2
3: 2 4 1 | 8 7 5 | 3 6 9

---------------------
4: 4 9 8 | 1 3 2 | 6 7 5
5: 7 1 3 | 5 8 6 | 9 2 4
6: 6 2 5 | 7 9 4 | 8 3 1

---------------------
7: 1 7 6 | 4 2 8 | 5 9 3
8: 9 8 4 | 3 5 7 | 2 1 6
9: 5 3 2 | 9 6 1 | 7 4 8

---------------------
Number of solutions: 1
Time spent in enumeration: 0.41sec
Number of nodes: 2712

The all_different relation takes an optional second argument that allows the user to spec-
ify the propagation algorithm to be used for evaluating the constraint. If we change from the
default setting (KALIS_FORWARD_CHECKING) to the more aggressive strategy KALIS_GEN_-
ARC_CONSISTENCY by adding this choice as the second argument, for example,

forall(y in YS)
all_different(union(x in XS) {v(x,y)}, KALIS_GEN_ARC_CONSISTENCY)

we observe that the number of nodes is reduced to a single node—the problem is solved by
simply posting the constraints. Whereas the time spent in the search is down to zero, the
constraint posting now takes 4-5 times longer (still just a fraction of a second) due to the
larger computational overhead of the generalized arc consistency algorithm. Allover, the time
for problem definition and solving is reduced to less than a tenth of the previous time.

As a general rule, the generalized arc consistency algorithm achieves stronger pruning (i.e.,
it removes more values from the domains of the variables). However, due to the increase in
computation time its use is not always justified. The reader is therefore encouraged to try both
algorithm settings in his models.

3.4 abs and distance: Frequency assignment

The area of telecommunications, and in particular mobile telecommunications, gives rise to
many different variants of frequency assignment problems.

We are given a network of cells (nodes) with requirements of discrete frequency bands. Each
cell has a given demand for a number of frequencies (bands). Figure 3.1 shows the structure of
the network. Nodes linked by an edge are considered as neighbors. They must not be assigned
the same frequencies to avoid interference. Furthermore, if a cell uses several frequencies they
must all be different by at least 2. The objective is to minimize the total number of frequencies
used in the network.
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Figure 3.1: Telecommunications network

Table 3.3 lists the number of frequency demands for every cell.

Table 3.3: Frequency demands at nodes

Cell 1 2 3 4 5 6 7 8 9 10

Demand 4 5 2 3 2 4 3 4 3 2

3.4.1 Model formulation

Let NODES be the set of all nodes in the network and DEMn the demand of frequencies at
node n ∈ NODES. The network is given as a set of edges LINKS. Furthermore, let DEMANDS =
{1, 2, . . . , NUMDEM} be the set of frequencies, numbered consecutively across all nodes where
the upper bound NUMDEM is given by the total number of demands. The auxiliary array
INDEXn indicates the starting index in DEMANDS for node n.

For representing the frequency assigned to every demand d ∈ DEMANDS we introduce the
variables used that take their values from the set {1, 2, . . . , NUMDEM}.

The two sets of constraints (different frequencies assigned to neighboring nodes and minimum
distance between frequencies within a node) can then be modeled as follows.

∀(n, m) ∈ LINKS : all-different

INDEXn+DEMn−1⋃
d=INDEXn

used ∪
INDEXm+DEMm−1⋃

d=INDEXm

used


∀n ∈ NODES,∀c < d ∈ INDEXn, . . . , INDEXn + DEMn − 1 : |usec − used| ≥ 2

The objective function is to minimize to the number of frequencies used. We formulate this by
minimizing the largest frequency number that occurs for the used variables:

minimize maximumd∈DEMANDS(used)

3.4.2 Implementation

The edges forming the telecommunications network are modeled as a list LINK, where edge l
is given as (LINK(l,1),LINK(l,2)).

For the implementation of the constraints on the values of frequencies assigned to the same
node we have two equivalent choices with Kalis, namely using abs or distance constraints.

model "Frequency assignment"
uses "kalis"

forward procedure print_solution
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declarations
NODES = 1..10 ! Range of nodes
LINKS = 1..18 ! Range of links between nodes
DEM: array(NODES) of integer ! Demand of nodes
LINK: array(LINKS,1..2) of integer ! Neighboring nodes
INDEX: array(NODES) of integer ! Start index in ’use’
NUMDEM: integer ! Upper bound on no. of freq.
end-declarations

DEM :: (1..10)[4, 5, 2, 3, 2, 4, 3, 4, 3, 2]
LINK:: (1..18,1..2)[1, 3, 1, 4, 1, 6,

2, 4, 2, 7,
3, 4, 3, 6, 3, 8, 3, 9,
4, 7, 4, 9, 4,10,
5, 7, 5, 8, 5, 9,
6, 9, 7, 8, 8,10]

NUMDEM:= sum(n in NODES) DEM(n)

! Correspondence of nodes and demand indices:
! use(d) d = 1, ..., DEM(1) correspond to the demands of node 1
! d = DEM(1)+1, ..., DEM(1)+DEM(2)) - " - node 2 etc.
INDEX(1):= 1
forall(n in NODES | n > 1) INDEX(n) := INDEX(n-1) + DEM(n-1)

declarations
DEMANDS = 1..NUMDEM ! Range of frequency demands
use: array(DEMANDS) of cpvar ! Frequency used for a demand
numfreq: cpvar ! Number of frequencies used
Strategy: array(range) of cpbranching
end-declarations

! Setting the domain of the decision variables
forall(d in DEMANDS) setdomain(use(d), 1, NUMDEM)

! All frequencies attached to a node must be different by at least 2
forall(n in NODES, c,d in INDEX(n)..INDEX(n)+DEM(n)-1 | c<d)
distance(use(c), use(d)) >= 2

! abs(use(c) - use(d)) >= 2

! Neighboring nodes take all-different frequencies
forall(l in LINKS)
all_different(
union(d in INDEX(LINK(l,1))..INDEX(LINK(l,1))+DEM(LINK(l,1))-1) {use(d)} +
union(d in INDEX(LINK(l,2))..INDEX(LINK(l,2))+DEM(LINK(l,2))-1) {use(d)},
KALIS_GEN_ARC_CONSISTENCY)

! Objective function: minimize the number of frequencies used, that is,
! minimize the largest value assigned to ’use’
setname(numfreq, "NumFreq")
numfreq = maximum(use)

! Search strategy
Strategy(1):=assign_var(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX, use)
Strategy(2):=assign_var(KALIS_MAX_DEGREE, KALIS_MIN_TO_MAX, use)
cp_set_branching(Strategy(1))
setparam("MAX_COMPUTATION_TIME", 1)
cp_set_solution_callback("print_solution")

! Try to find solution(s) with strategy 1
if (cp_minimize(numfreq)) then
cp_show_stats
sol:=getsol(numfreq)
end-if

! Restart search with strategy 2
cp_reset_search
if sol>0 then ! If a solution was found:
numfreq <= sol-1 ! Add upper bound on objective
end-if
cp_set_branching(Strategy(2))
setparam("MAX_COMPUTATION_TIME", 1000)

if (cp_minimize(numfreq)) then
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cp_show_stats
elif sol>0 then
writeln("Optimality proven")
else
writeln("Problem has no solution")
end-if

!********************************************************************
! **** Solution printout ****
procedure print_solution
writeln("Number of frequencies: ", getsol(numfreq))
writeln("Frequency assignment: ")
forall(n in NODES) do
write("Node ", n, ": ")
forall(d in INDEX(n)..INDEX(n)+DEM(n)-1) write(getsol(use(d)), " ")
writeln
end-do
end-procedure

end-model

With just the default search strategy this model finds a solution of value 11 but it runs for a
long time without being able to prove optimality. When experimenting with different search
strategies we have found that the strategy obtained by changing the variable selection crite-
rion to KALIS_MAX_DEGREE is able to prove optimality easily once a good solution is known.
This problem is therefore solved in two steps: First, we use the default strategy for finding a
good solution. This search is stopped after one second by setting a time limit. The search is then
restarted (previously, we needed to reset the search tree in the solver with cp_reset_search)
with a second strategy and the bound on the objective value from the previous run.

To ease the experiments with different search strategies we have defined an array Strategy
of type cpbranching that stores the different search strategy definitions.

Another new feature demonstrated by this implementation is the use of a callback, more pre-
cisely the solution callback of Xpress-Kalis. The solution callback is defined with a user subrou-
tine that will be called by the solver whenever the search has found a solution. Its typical uses
are logging or storing of intermediate solutions or performing some statistics. Our procedure
print_solution simply prints out the solution that has been found.

Improving the problem formulation: we may observe that in our problem formulation all de-
mand variables within a node and the constraints on these variables are entirely symmetric. In
the absence of other constraints, we may reduce these symmetries by imposing an order on
the use variables,

used + 1 ≤ used+1

for demands d and d + 1 belonging to the same cell. Doing so, the problem is solved to
optimality within less than 40 nodes using just the default strategy. We may take this a step
further by writing

used + 2 ≤ used+1

The addition of these constraints shortens the search by yet a few more nodes. They can even
be used simply in replacement of the abs or distance constraints.

3.4.3 Results

An optimal solution to this problem uses 11 different frequencies. The model shown in the
program listing prints out the following assignment of frequencies to nodes:

Node 1: 1 3 5 7
Node 2: 1 3 5 7 10
Node 3: 2 8
Node 4: 4 6 9
Node 5: 4 6
Node 6: 4 6 9 11
Node 7: 2 8 11
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Node 8: 1 3 5 7
Node 9: 1 3 5
Node 10: 2 8

3.5 element: Sequencing jobs on a single machine

The problem described in this section is taken from Section 7.4 ‘Sequencing jobs on a bottle-
neck machine’ of the book ‘Applications of optimization with Xpress-MP’

The aim of this problem is to provide a model that may be used with different objective func-
tions for scheduling operations on a single (bottleneck) machine. We shall see here how to
minimize the total processing time, the average processing time, and the total tardiness.

A set of tasks (or jobs) is to be processed on a single machine. The execution of tasks is non-
preemptive (that is, an operation may not be interrupted before its completion). For every task
i its release date, duration, and due date are given in Table 3.4.

Table 3.4: Task time windows and durations

Job 1 2 3 4 5 6 7

Release date 2 5 4 0 0 8 9

Duration 5 6 8 4 2 4 2

Due date 10 21 15 10 5 15 22

What is the optimal value for each of the objectives: minimizing the total duration of the
schedule (makespan), the mean processing time or the total tardiness (that is, the amount of
time by which the completion of jobs exceeds their respective due dates)?

3.5.1 Model formulation 1

We are going to present two alternative model formulations. The first is closer to the Math-
ematical Programming formulation in ‘Applications of optimization with Xpress-MP’. The sec-
ond uses disjunctive constraints and branching on these. In both model formulations we are
going deal with the different objective functions in sequence, but the body of the models will
remain the same.

To represent the sequence of jobs we introduce variables rankk (k ∈ JOBS = {1, . . . , NJ}) that
take as value the number of the job in position (rank) k. Every job j takes a single position.
This constraint can be represented by an all-different on the rankk variables:

all-different(rank1, . . . , rankNJ)

The processing time durk for the job in position k is given by DURrankk
(where DURj denotes the

duration given in the table in the previous section). Similarly, the release time relk is given by
RELrankk

(where RELj denotes the given release date):

∀k ∈ JOBS : durk = DURrankk

∀k ∈ JOBS : relk = RELrankk

If startk is the start time of the job at position k, this value must be at least as great as the
release date of the job assigned to this position. The completion time compk of this job is the
sum of its start time plus its duration:

∀k ∈ JOBS : startk ≥ relk
∀k ∈ JOBS : compk = startk + durk

Another constraint is needed to specify that two jobs cannot be processed simultaneously. The
job in position k + 1 must start after the job in position k has finished, hence the following
constraints:

∀k ∈ {1, . . . , NJ− 1} : startk+1 ≥ startk + durk
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Objective 1: The first objective is to minimize the makespan (completion time of the schedule),
or, equivalently, to minimize the completion time of the last job (job with rank NJ). The com-
plete model is then given by the following (where MAXTIME is a sufficiently large value, such
as the sum of all release dates and all durations):

minimize compNJ

∀k ∈ JOBS : rankk ∈ JOBS

∀k ∈ JOBS : startk, compk ∈ {0, . . . , MAXTIME}
∀k ∈ JOBS : durk ∈ {minj∈JOBSDURj, . . . , maxj∈JOBSDURj}
∀k ∈ JOBS : relk ∈ {minj∈JOBSRELj, . . . , maxj∈JOBSRELj}
all-different(rank1, . . . , rankNJ)

∀k ∈ JOBS : durk = DURrankk

∀k ∈ JOBS : relk = RELrankk

∀k ∈ JOBS : startk ≥ relk
∀k ∈ JOBS : compk = startk + durk

∀k ∈ {1, . . . , NJ− 1} : startk+1 ≥ startk + durk

Objective 2: For minimizing the average processing time, we introduce an additional variable
totComp representing the sum of the completion times of all jobs. We add the following
constraint to the problem to calculate totComp:

totComp =
∑

k∈JOBS

compk

The new objective consists of minimizing the average processing time, or equivalently, mini-
mizing the sum of the job completion times:

minimize totComp

Objective 3: If we now aim to minimize the total tardiness, we again introduce new variables—
this time to measure the amount of time that jobs finish after their due date. We write latek for
the variable that corresponds to the tardiness of the job with rank k. Its value is the difference
between the completion time of a job j and its due date DUEj. If the job finishes before its due
date, the value must be zero. We thus obtain the following constraints:

∀k ∈ JOBS : duek = DUErankk

∀k ∈ JOBS : latek ≥ compk − duek

For the formulation of the new objective function we introduce the variable totLate represent-
ing the total tardiness of all jobs. The objective now is to minimize the value of this variable:

minimize totLate

totLate =
∑

k∈JOBS

latek

3.5.2 Implementation of model 1

The Mosel implementation below solves the same problem three times, each time with a dif-
ferent objective, and prints the resulting solutions by calling the procedures print_sol and
print_sol3.

model "B-4 Sequencing (CP)"
uses "kalis"

forward procedure print_sol
forward procedure print_sol3
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declarations
NJ = 7 ! Number of jobs
JOBS=1..NJ

REL: array(JOBS) of integer ! Release dates of jobs
DUR: array(JOBS) of integer ! Durations of jobs
DUE: array(JOBS) of integer ! Due dates of jobs

rank: array(JOBS) of cpvar ! Number of job at position k
start: array(JOBS) of cpvar ! Start time of job at position k
dur: array(JOBS) of cpvar ! Duration of job at position k
comp: array(JOBS) of cpvar ! Completion time of job at position k
rel: array(JOBS) of cpvar ! Release date of job at position k
end-declarations

initializations from ’Data/b4seq.dat’
DUR REL DUE
end-initializations

MAXTIME:= max(j in JOBS) REL(j) + sum(j in JOBS) DUR(j)
MINDUR:= min(j in JOBS) DUR(j); MAXDUR:= max(j in JOBS) DUR(j)
MINREL:= min(j in JOBS) REL(j); MAXREL:= max(j in JOBS) REL(j)

forall(j in JOBS) do
1 <= rank(j); rank(j) <= NJ
0 <= start(j); start(j) <= MAXTIME
MINDUR <= dur(j); dur(j) <= MAXDUR
0 <= comp(j); comp(j) <= MAXTIME
MINREL <= rel(j); rel(j) <= MAXREL
end-do

! One posistion per job
all_different(rank)

! Duration of job at position k
forall(k in JOBS) dur(k) = element(DUR, rank(k))

! Release date of job at position k
forall(k in JOBS) rel(k) = element(REL, rank(k))

! Sequence of jobs
forall(k in 1..NJ-1) start(k+1) >= start(k) + dur(k)

! Start times
forall(k in JOBS) start(k) >= rel(k)

! Completion times
forall(k in JOBS) comp(k) = start(k) + dur(k)

! Set the branching strategy
cp_set_branching(split_domain(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX))

!**** Objective function 1: minimize latest completion time ****
if cp_minimize(comp(NJ)) then
print_sol
end-if

!**** Objective function 2: minimize average completion time ****
declarations
totComp: cpvar
end-declarations

totComp = sum(k in JOBS) comp(k)

if cp_minimize(totComp) then
print_sol
end-if

!**** Objective function 3: minimize total tardiness ****
declarations
late: array(JOBS) of cpvar ! Lateness of job at position k
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due: array(JOBS) of cpvar ! Due date of job at position k
totLate: cpvar
end-declarations

MINDUE:= min(k in JOBS) DUE(k); MAXDUE:= max(k in JOBS) DUE(k)

forall(k in JOBS) do
MINDUE <= due(k); due(k) <= MAXDUE
0 <= late(k); late(k) <= MAXTIME
end-do

! Due date of job at position k
forall(k in JOBS) due(k) = element(DUE, rank(k))

! Late jobs: completion time exceeds the due date
forall(k in JOBS) late(k) >= comp(k) - due(k)

totLate = sum(k in JOBS) late(k)

if cp_minimize(totLate) then
writeln("Tardiness: ", getsol(totLate))
print_sol
print_sol3
end-if

!-----------------------------------------------------------------

! Solution printing
procedure print_sol
writeln("Completion time: ", getsol(comp(NJ)) ,

" average: ", getsol(sum(k in JOBS) comp(k)))
write("\t")
forall(k in JOBS) write(strfmt(getsol(rank(k)),4))
write("\nRel\t")
forall(k in JOBS) write(strfmt(getsol(rel(k)),4))
write("\nDur\t")
forall(k in JOBS) write(strfmt(getsol(dur(k)),4))
write("\nStart\t")
forall(k in JOBS) write(strfmt(getsol(start(k)),4))
write("\nEnd\t")
forall(k in JOBS) write(strfmt(getsol(comp(k)),4))
writeln
end-procedure

procedure print_sol3
write("Due\t")
forall(k in JOBS) write(strfmt(getsol(due(k)),4))
write("\nLate\t")
forall(k in JOBS) write(strfmt(getsol(late(k)),4))
writeln
end-procedure

end-model

NB: The reader may have been wondering why we did not use the more obvious pair start−end
for naming the variables in this example: end is a keyword of the Mosel language (see the
list of reserved words in the Mosel language reference manual), which means that neither
end nor END may be redefined by a Mosel program. It is possible though, to use versions
combining lower and upper case letters, like End, but to prevent any possible confusion we do
not recommend their use.

3.5.3 Results

The minimum makespan of the schedule is 31, the minimum sum of completion times is 103
(which gives an average of 103 / 7 = 14. 71). A schedule with this objective value is 5 → 4 →
1 → 7 → 6 → 2 → 3. If we compare the completion times with the due dates we see that jobs
1, 2, 3, and 6 finish late (with a total tardiness of 21). The minimum tardiness is 18. A schedule
with this tardiness is 5 → 1 → 4 → 6 → 2 → 7 → 3 where jobs 4 and 7 finish one time unit late
and job 3 is late by 16 time units, and it terminates at time 31 instead of being ready at its due
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date, time 15. This schedule has an average completion time of 15.71.

3.5.4 Alternative formulation using disjunctions

Our second model formulation is possibly a more straightforward way of representing the
problem. It introduces disjunctive constraints and branching on these.

Every job is now represented by its starting time, variables startj (j ∈ JOBS = {1, . . . , NJ}) that
take their values in {RELj, . . . , MAXTIME} (where MAXTIME is a sufficiently large value, such as
the sum of all release dates and all durations, and RELj the release date of job j). We state the
disjunctions as a single disjunctive relation on the start times and durations of all jobs.

disjunctive([start1, . . . , startNJ], [DUR1, . . . , DURNJ])

This constraint replaces the pair-wise disjunctions

starti + DURi ≤ startj ∨ startj + DURj ≤ starti

for all pairs of jobs i < j ∈ JOBS.

The processing time durk for the job in position k is given by DURrankk
(where DURj denotes the

duration given in the table in the previous section). Similarly, its release time relk is given by
RELrankk

(where RELj denotes the given release date).

∀k ∈ JOBS : durk = DURrankk

∀k ∈ JOBS : relk = RELrankk

The completion time compj of a job j is the sum of its start time plus its duration DURj.

∀j ∈ JOBS : compj = startj + DURj

Objective 1: The first objective is to minimize the makespan (completion time of the schedule)
or, equivalently, to minimize the completion time finish of the last job. The complete model is
then given by the following (where MAXTIME is a sufficiently large value, such as the sum of
all release dates and all durations):

minimize finish

finish = maximumj∈JOBS(compj)

∀j ∈ JOBS : compj ∈ {0, . . . , MAXTIME}
∀j ∈ JOBS : startj ∈ {RELj, . . . , MAXTIME}
disjunctive([start1, . . . , startNJ], [DUR1, . . . , DURNJ])

∀j ∈ JOBS : compj = startj + DURj

Objective 2: The formulation of the second objective (minimizing the average processing time
or, equivalently, minimizing the sum of the job completion times) remains unchanged from
the first model—we introduce an additional variable totComp representing the sum of the
completion times of all jobs.

minimize totComp

totComp =
∑

k∈JOBS

compk

Objective 3: To formulate the objective of minimizing the total tardiness, we introduce new
variables latej to measure the amount of time that a job finishes after its due date. The value
of these variables corresponds to the difference between the completion time of a job j and
its due date DUEj. If the job finishes before its due date, the value must be zero. The objective
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now is to minimize the sum of these tardiness variables:

minimize totLate

totLate =
∑

j∈JOBS

latej

∀j ∈ JOBS : latej ∈ {0, . . . , MAXTIME}
∀j ∈ JOBS : latej ≥ compj − DUEj

3.5.5 Implementation of model 2

As with model 1, the Mosel implementation below solves the same problem three times, each
time with a different objective, and prints the resulting solutions by calling the procedures
print_sol and print_sol3.

model "B-4 Sequencing (CP)"
uses "kalis"

forward procedure print_sol
forward procedure print_sol3

declarations
NJ = 7 ! Number of jobs
JOBS=1..NJ

REL: array(JOBS) of integer ! Release dates of jobs
DUR: array(JOBS) of integer ! Durations of jobs
DUE: array(JOBS) of integer ! Due dates of jobs
DURS: array(set of cpvar) of integer ! Dur.s indexed by start variables

start: array(JOBS) of cpvar ! Start time of jobs
comp: array(JOBS) of cpvar ! Completion time of jobs
finish: cpvar ! Completion time of the entire schedule
Disj: set of cpctr ! Disjunction constraints
Strategy: array(range) of cpbranching ! Branching strategy
end-declarations

initializations from ’Data/b4seq.dat’
DUR REL DUE
end-initializations

MAXTIME:= max(j in JOBS) REL(j) + sum(j in JOBS) DUR(j)

forall(j in JOBS) do
0 <= start(j); start(j) <= MAXTIME
0 <= comp(j); comp(j) <= MAXTIME
end-do

! Disjunctions between jobs
forall(j in JOBS) DURS(start(j)):= DUR(j)
disjunctive(union(j in JOBS) {start(j)}, DURS, Disj, 1)

! Start times
forall(j in JOBS) start(j) >= REL(j)

! Completion times
forall(j in JOBS) comp(j) = start(j) + DUR(j)

!**** Objective function 1: minimize latest completion time ****
finish = maximum(comp)

Strategy(1):= settle_disjunction(Disj)
Strategy(2):= split_domain(KALIS_LARGEST_MAX, KALIS_MIN_TO_MAX)
cp_set_branching(Strategy)

if cp_minimize(finish) then
print_sol
end-if

!**** Objective function 2: minimize average completion time ****
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declarations
totComp: cpvar
end-declarations

totComp = sum(k in JOBS) comp(k)

if cp_minimize(totComp) then
print_sol
end-if

!**** Objective function 3: minimize total tardiness ****
declarations
late: array(JOBS) of cpvar ! Lateness of jobs
totLate: cpvar
end-declarations

forall(k in JOBS) do
0 <= late(k); late(k) <= MAXTIME
end-do

! Late jobs: completion time exceeds the due date
forall(j in JOBS) late(j) >= comp(j) - DUE(j)

totLate = sum(k in JOBS) late(k)
if cp_minimize(totLate) then
writeln("Tardiness: ", getsol(totLate))
print_sol
print_sol3
end-if

!-----------------------------------------------------------------

! Solution printing
procedure print_sol
writeln("Completion time: ", getsol(finish) ,

" average: ", getsol(sum(j in JOBS) comp(j)))
write("Rel\t")
forall(j in JOBS) write(strfmt(REL(j),4))
write("\nDur\t")
forall(j in JOBS) write(strfmt(DUR(j),4))
write("\nStart\t")
forall(j in JOBS) write(strfmt(getsol(start(j)),4))
write("\nEnd\t")
forall(j in JOBS) write(strfmt(getsol(comp(j)),4))
writeln
end-procedure

procedure print_sol3
write("Due\t")
forall(j in JOBS) write(strfmt(DUE(j),4))
write("\nLate\t")
forall(j in JOBS) write(strfmt(getsol(late(j)),4))
writeln
end-procedure

end-model

This implementation introduces a new branching scheme, namely settle_disjunction. As
opposed to the branching strategies we have seen so far this scheme defines a branching strat-
egy over constraints, and not over variables. With this scheme a node is created by choosing a
constraint from the given set and the branches from the node are obtained by adding one of
the mutually exclusive constraints forming this disjunctive constraint to the constraint system.

NB: the disjunctive constraint of Xpress-Kalis establishes pair-wise inequalities between the
processing times of tasks. However, the definition of disjunctive constraints is not restricted to
this case: a disjunction may have more than two components, and involve constraints of any
type, including other logic relations obtained by combining constraints with and or or.
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3.6 occurrence: Sugar production

The problem description in this section is taken from Section 6.4 ‘Cane sugar production’ of
the book ‘Applications of optimization with Xpress-MP’

The harvest of cane sugar in Australia is highly mechanized. The sugar cane is immediately
transported to a sugarhouse in wagons that run on a network of small rail tracks. The sugar
content of a wagonload depends on the field it has been harvested from and on the maturity
of the sugar cane. Once harvested, the sugar content decreases rapidly through fermentation
and the wagonload will entirely lose its value after a certain time. At this moment, eleven
wagons loaded with the same quantity have arrived at the sugarhouse. They have been exam-
ined to find out the hourly loss and the remaining life span (in hours) of every wagon, these
data are summarized in the following table.

Table 3.5: Properties of the lots of cane sugar

Lot 1 2 3 4 5 6 7 8 9 10 11

Loss (kg/h) 43 26 37 28 13 54 62 49 19 28 30

Life span (h) 8 8 2 8 4 8 8 8 8 8 8

Every lot may be processed by any of the three, fully equivalent production lines of the sug-
arhouse. The processing of a lot takes two hours. It must be finished at the latest at the end
of the life span of the wagonload. The manager of the sugarhouse wishes to determine a
production schedule for the currently available lots that minimizes the total loss of sugar.

3.6.1 Model formulation

Let WAGONS = {1, . . . , NW} be the set of wagons, NL the number of production lines and
DUR the duration of the production process for every lot. The hourly loss for every wagon
w is given by LOSSw and its life span by LIFEw . We observe that, in an optimal solution, the
production lines need to work without any break—otherwise we could reduce the loss in sugar
by advancing the start of the lot that follows the break. This means that the completion time
of every lot is of the form s · DUR, with s > 0 and is an integer. The maximum value of s is the
number of time slots (of length DUR) that the sugarhouse will work, namely NS = ceil(NW /
NL), where ceil stands for ‘rounded to the next largest integer’. If NW / NL is an integer, every
line will process exactly NS lots. Otherwise, some lines will process NS− 1 lots, but at least one
line processes NS lots. In all cases, the length of the optimal schedule is NS ·DUR hours. We call
SLOTS = {1, . . . , NS} the set of time slots.

Every lot needs to be assigned to a time slot. We define variables processw for the time slot
assigned to wagon w and variables lossw for the loss incurred by this wagonload. Every time
slot may take up to NL lots because there are NL parallel lines; therefore, we limit the number
of occurrences of time slot values among the processw variables (this constraint relation is often
called cardinality constraint):

s ∈ SLOTS : |processw = s|w∈WAGONS ≤ NL

The loss of sugar per wagonload w and time slot s is COSTws = s · DUR · LOSSw . Let variables
lossw denote the loss incurred by wagon load w:

∀w ∈ WAGONS : lossw = COSTw,processw

The objective function (total loss of sugar) is then given as the sum of all losses:

minimize
∑

w∈WAGONS

lossw

3.6.2 Implementation

The following model is the Mosel implementation of this problem. It uses the function ceil
to calculate the maximum number of time slots.

Constraints 36 Xpress-Kalis user guide

http://www.dashoptimization.com/home/services/publications/applications_book.html


The constraints on the processing variables are expressed by occurrence relations and the
losses are obtained via element constraints. The branching strategy uses the variable selection
criterion KALIS_SMALLEST_MAX, that is, choosing the variable with the smallest upper bound.

model "A-4 Cane sugar production (CP)"
uses "kalis"

declarations
NW = 11 ! Number of wagon loads of sugar
NL = 3 ! Number of production lines
WAGONS = 1..NW
NS = ceil(NW/NL)
SLOTS = 1..NS ! Time slots for production

LOSS: array(WAGONS) of integer ! Loss in kg/hour
LIFE: array(WAGONS) of integer ! Remaining time per lot (in hours)
DUR: integer ! Duration of the production (in hours)
COST: array(SLOTS) of integer ! Cost per wagon

loss: array(WAGONS) of cpvar ! Loss per wagon
process: array(WAGONS) of cpvar ! Time slots for wagon loads

totalLoss: cpvar ! Objective variable
end-declarations

initializations from ’Data/a4sugar.dat’
LOSS LIFE DUR
end-initializations

forall(w in WAGONS) setdomain(process(w), 1, NS)

! Wagon loads per time slot
forall(s in SLOTS) occurrence(s, process) <= NL

! Limit on raw product life
forall(w in WAGONS) process(w) <= floor(LIFE(w)/DUR)

! Objective function: total loss
forall(w in WAGONS) do
forall(s in SLOTS) COST(s):= s*DUR*LOSS(w)
loss(w) = element(COST, process(w))
end-do
totalLoss = sum(w in WAGONS) loss(w)

cp_set_branching(assign_var(KALIS_SMALLEST_MAX, KALIS_MIN_TO_MAX, process))

! Solve the problem
if not (cp_minimize(totalLoss)) then
writeln("No solution found")
exit(0)
end-if

! Solution printing
writeln("Total loss: ", getsol(totalLoss))
forall(s in SLOTS) do
write("Slot ", s, ": ")
forall(w in WAGONS)
if(getsol(process(w))=s) then
write("wagon ", strfmt(w,2), strfmt(" (" + s*DUR*LOSS(w) + ") ", 8))
end-if
writeln
end-do

end-model

An alternative formulation of the constraints on the processing variables is to replace them
by a single distribute relation, indicating for every time slot the minimum and maximum
number (MINUSEs = 0 and MAXUSEs = NL) of production lines that may be used.

forall(s in SLOTS) MAXUSE(s):= NL
distribute(process, SLOTS, MINUSE, MAXUSE)
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Yet another formulation of this problem is possible with Xpress-Kalis, namely interpreting it as
a cumulative scheduling problem (see Section 5.4), where the wagon loads are represented by
tasks of unit duration, scheduled on a discrete resource with a capacity corresponding to the
number of production lines.

3.6.3 Results

We obtain a total loss of 1620 kg of sugar. The corresponding schedule of lots is shown in the
following Table 3.6 (there are several equivalent solutions).

Table 3.6: Optimal schedule for the cane sugar lots

Slot 1 Slot 2 Slot 3 Slot 4

lot 3 (74 kg) lot 1 (172 kg) lot 4 (168 kg) lot 2 (208 kg)

lot 6 (108 kg) lot 5 (52 kg) lot 9 (114 kg) lot 10 (224 kg)

lot 7 (124 kg) lot 8 (196 kg) lot 11 (180 kg)

3.7 distribute: Personnel planning

The director of a movie theater wishes to establish a plan with the working locations for his
personnel. The theater has eight employees: David, Andrew, Leslie, Jason, Oliver, Michael,
Jane, and Marilyn. The ticket office needs to be staffed with three persons, theater entrances
one and two require two persons each, and one person needs to be put in charge of the
cloakroom. Due to different qualifications and respecting individual likes and dislikes, the
following constraints need to be taken into account:

1. Leslie must be at the second entrance of the theater.

2. Michael must be at the first entrance of the theater.

3. David, Michael and Jason cannot work with each other.

4. If Oliver is selling tickets, Marylin must be with him.

3.7.1 Model formulation

Let PERS be the set of personnel and LOC = {1, . . . , 4} the set of working locations where 1
stands for the ticket office, 2 and 3 for entrances 1 and 2 respectively, and 4 for the cloakroom.

We introduce decision variables placep for the working location assigned to person p. The four
individual constraints on working locations can then be stated as follows:

placeLeslie = 3

placeMichael = 2

all-different(placeDavid, placeMichael, placeJason)

placeOliver = 1 ⇒ placeMarylin = 1

We also have to meet the staffing requirement of every working location:

∀l ∈ LOC : |placep = l|p∈PERS = REQl

3.7.2 Implementation

For the implementation of the staffing requirements we may choose among two different
constraints of Xpress-Kalis, namely occurrence constraints (one per working location) or a
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distribute constraint (also known as global cardinality constraint) over all working loca-
tions. The following model shows both options. As opposed to the previous example (Sec-
tion 3.6.2 we now have equality constraints. We therefore use the three-argument version of
distribute (instead of the version with four arguments where the last two are the lower and
upper bounds respectively).

For an attractive display, the model also introduces a few auxiliary data structures with the
names of the working locations and the corresponding index values in the set LOC.

model "Personnel Planning (CP)"
uses "kalis"

forward procedure print_solution

declarations
PERS = {"David","Andrew","Leslie","Jason","Oliver","Michael",

"Jane","Marilyn"} ! Set of personnel
LOC = 1..4 ! Set of locations
LOCNAMES = {"Ticketoffice", "Theater1", "Theater2",

"Cloakroom"} ! Names of locations
LOCNUM: array(LOCNAMES) of integer ! Numbers assoc. with loc.s
REQ: array(LOC) of integer ! No. of pers. req. per loc.

place: array(PERS) of cpvar ! Workplace assigned to each peson
end-declarations

! Initialize data
LOCNUM("Ticketoffice"):= 1; LOCNUM("Theater1"):= 2
LOCNUM("Theater2"):= 3; LOCNUM("Cloakroom"):= 4
REQ:: (1..4)[3, 2, 2, 1]

! Each variable has a lower bound of 1 (Ticketoffice) and an upper bound
! of 4 (Cloakroom)
forall(p in PERS) do
setname(place(p),"workplace["+p+"]")
setdomain(place(p), LOC)
end-do

! "Leslie must be at the second entrance of the theater"
place("Leslie") = LOCNUM("Theater2")

! "Michael must be at the first entrance of the theater"
place("Michael") = LOCNUM("Theater1")

! "David, Michael and Jason cannot work with each other"
all_different({place("David"), place("Michael"), place("Jason")})

! "If Oliver is selling tickets, Marylin must be with him"
implies(place("Oliver")=LOCNUM("Ticketoffice"),

place("Marilyn")=LOCNUM("Ticketoffice"))

! Creation of a resource constraint of for every location
! forall(d in LOC) occurrence(LOCNUM(d), place) = REQ(d)

! Formulation of resource constraints using global cardinality constraint
distribute(place, LOC, REQ)

! Setting parameters of the enumeration
cp_set_branching(assign_var(KALIS_SMALLEST_MIN, KALIS_MAX_TO_MIN, place))

! Solve the problem
if not(cp_find_next_sol) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution output
nbSolutions:= 1
print_solution

! Search for other solutions
while (cp_find_next_sol) do
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nbSolutions += 1
print_solution
end-do

! **** Solution printout ****
procedure print_solution
declarations
LOCIDX: array(LOC) of string
end-declarations
forall(l in LOCNAMES) LOCIDX(LOCNUM(l)):=l

writeln("\nSolution number ", nbSolutions)
forall(p in PERS)
writeln(" Working place of ", p, ": ", LOCIDX(getsol(place(p))))

end-procedure

end-model

Since we merely wish to find a feasible assignment of working locations, this model first tests
whether a feasible solution exists. If this is the case, it also enumerates all other feasible
solutions. Each time a solution is found it is printed out by call to the procedure print_-
solution.

3.7.3 Results

This problem has 38 feasible solutions. The graphical representation with IVE of a feasible
assignment is shown in Figure 3.2.

Figure 3.2: Personnel schedule representation in IVE

The following Mosel code was used for generating the graphic (see the documentation of
module mmive in the Mosel language reference manual for further explanation).

procedure draw_solution
IVEerase
PersGraph:= IVEaddplot("Personnel", IVE_BLUE)
LocGraph:= IVEaddplot("Locations", IVE_CYAN)
AsgnGraph:= IVEaddplot("Assignments", IVE_BLACK)
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forall (d in LOCNAMES)
IVEdrawlabel(LocGraph, 1.2, LOCNUM(d)-getsize(LOC)/2, d)

idx:= 1
forall(p in PERS) do
IVEdrawline(AsgnGraph, 0, idx-getsize(PERS)/2,

1, getsol(place(p))-getsize(LOC)/2)
IVEdrawlabel(PersGraph, -0.1, idx-getsize(PERS)/2, p)
idx:= idx + 1
end-do

IVEzoom(-1, getsize(PERS)/2+1, 2, -getsize(PERS)/2)
IVEpause("press a key to continue")
end-procedure

3.8 implies: Paint production

The problem description in this section is taken from Section 7.5 ‘Paint production’ of the book
‘Applications of optimization with Xpress-MP’

As a part of its weekly production a paint company produces five batches of paints, always
the same, for some big clients who have a stable demand. Every paint batch is produced in a
single production process, all in the same blender that needs to be cleaned between every two
batches. The durations of blending paint batches 1 to 5 are respectively 40, 35, 45, 32, and 50
minutes. The cleaning times depend on the colors and the paint types. For example, a long
cleaning period is required if an oil-based paint is produced after a water-based paint, or to
produce white paint after a dark color. The times are given in minutes in the following Table
3.7 CLEAN where CLEANij denotes the cleaning time between batch i and batch j.

Table 3.7: Matrix of cleaning times

1 2 3 4 5

1 0 11 7 13 11

2 5 0 13 15 15

3 13 15 0 23 11

4 9 13 5 0 3

5 3 7 7 7 0

Since the company also has other activities, it wishes to deal with this weekly production in
the shortest possible time (blending and cleaning). Which is the corresponding order of paint
batches? The order will be applied every week, so the cleaning time between the last batch
of one week and the first of the following week needs to be counted for the total duration of
cleaning.

3.8.1 Formulation of model 1

As for the problem in Section 3.5 we are going to present two alternative model formula-
tions. The first one is closer to the Mathematical Programming formulation in ‘Applications of
optimization with Xpress-MP’, the second uses a two-dimensional element constraint.

Let JOBS = {1, . . . , NJ} be the set of batches to produce, DURj the processing time for batch j,
and CLEANij the cleaning time between the consecutive batches i and j. We introduce decision
variables succj taking their values in JOBS, to indicate the successor of every job, and variables
cleanj for the duration of the cleaning after every job. The cleaning time after every job is
obtained by indexing CLEANij with the value of succj. We thus have the following problem
formulation.

minimize
∑

j∈JOBS

(DURj + cleanj)

∀j ∈ JOBS : succj ∈ JOBS\{j}
∀j ∈ JOBS : cleanj = CLEANj,succj
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all-different

 ⋃
j∈JOBS

succj


The objective function sums up the processing and cleaning times of all batches. The last
(all-different) constraint guarantees that every batch occurs exactly once in the production
sequence.

Unfortunately, this model does not guarantee that the solution forms a single cycle. Solving it
indeed results in a total duration of 239 with an invalid solution that contains two sub-cycles
1 → 3 → 2 → 1 and 4 → 5 → 4. A first possibility is to add a disjunction excluding this solution
to our model and re-solve it iteratively until we reach a solution without sub-cycles.

∀succ1 6= 3 ∨ succ3 6= 2 ∨ succ2 6= 1 ∨ succ1 6= 5 ∨ succ5 6= 4

However, this procedure is likely to become impractical with larger data sets since it may poten-
tially introduce an extremely large number of disjunctions. We therefore choose a different,
a-priori formulation of the sub-cycle elimination constraints with a variable yj per batch and
NJ · (NJ− 1) implication constraints.

∀j ∈ JOBS : rankj ∈ {1, . . . , NJ}
∀i ∈ JOBS,∀j = 2, . . . , NJ, i 6= j : succi = j ⇒ yj = yi + 1

The variables yj correspond to the position of job j in the production cycle. With these con-
straints, job 1 always takes the first position.

3.8.2 Implementation of model 1

The Mosel implementation of the model formulated in the previous section is quite straightfor-
ward. The sub-cycle elimination constraints are implemented as logic relations with implies
(a stronger formulation of these constraints is obtained by replacing the implications by equiv-
alences, using equiv).

model "B-5 Paint production (CP)"
uses "kalis"

declarations
NJ = 5 ! Number of paint batches (=jobs)
JOBS=1..NJ

DUR: array(JOBS) of integer ! Durations of jobs
CLEAN: array(JOBS,JOBS) of integer ! Cleaning times between jobs
CB: array(JOBS) of integer ! Cleaning times after a batch

succ: array(JOBS) of cpvar ! Successor of a batch
clean: array(JOBS) of cpvar ! Cleaning time after batches
y: array(JOBS) of cpvar ! Variables for excluding subtours
cycleTime: cpvar ! Objective variable
end-declarations

initializations from ’Data/b5paint.dat’
DUR CLEAN
end-initializations

forall(j in JOBS) do
1 <= succ(j); succ(j) <= NJ; succ(j) <> j
1 <= y(j); y(j) <= NJ
end-do

! Cleaning time after every batch
forall(j in JOBS) do
forall(i in JOBS) CB(i):= CLEAN(j,i)
clean(j) = element(CB, succ(j))
end-do
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! Objective: minimize the duration of a production cycle
cycleTime = sum(j in JOBS) (DUR(j)+clean(j))

! One successor and one predecessor per batch
all_different(succ)

! Exclude subtours
forall(i in JOBS, j in 2..NJ | i<>j)
implies(succ(i) = j, y(j) = y(i) + 1)

! Solve the problem
if not cp_minimize(cycleTime) then
writeln("Problem is infeasible")
exit(1)
end-if
cp_show_stats

! Solution printing
writeln("Minimum cycle time: ", getsol(cycleTime))
writeln("Sequence of batches:\nBatch Duration Cleaning")
first:=1
repeat
writeln(" ", first, strfmt(DUR(first),8), strfmt(getsol(clean(first)),9))
first:=getsol(succ(first))
until (first=1)

end-model

3.8.3 Formulation of model 2

We may choose to implement the paint production problem using rank variables similarly to
the sequencing model in Section 3.5.1.

As before, let JOBS = {1, . . . , NJ} be the set of batches to produce, DURj the processing time for
batch j, and CLEANij the cleaning time between the consecutive batches i and j. We introduce
decision variables rankk taking their values in JOBS, for the number of the job in position k.
Variables cleank (k ∈ JOBS) now denote the duration of the kth cleaning time. This duration
is obtained by indexing CLEANij with the values of two consecutive rankk variables. We thus
have the following problem formulation.

minimize
∑

j∈JOBS

DURj +
∑

k∈JOBS

cleank

∀k ∈ JOBS : rankk ∈ JOBS

∀k ∈ {1, . . . , NJ− 1} : cleank = CLEANrankk,rankk+1

cleanNJ = CLEANrankNJ,rank1

all-different

( ⋃
k∈JOBS

rankk

)

As in model 1, the objective function sums up the processing and cleaning times of all batches.
Although not strictly necessary from the mathematical point of view, we use different sum
indices for durations and cleaning times to show the difference between summing over jobs
or job positions. We now have an all-different constraint over the rank variables to guarantee
that every batch occurs exactly once in the production sequence.

3.8.4 Implementation of model 2

The implementation of the second model uses the 2-dimensional version of the element con-
straint in Xpress-Kalis.

model "B-5 Paint production (CP)"
uses "kalis"

declarations
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NJ = 5 ! Number of paint batches (=jobs)
JOBS=1..NJ

DUR: array(JOBS) of integer ! Durations of jobs
CLEAN: array(JOBS,JOBS) of integer ! Cleaning times between jobs

rank: array(JOBS) of cpvar ! Number of job in position k
clean: array(JOBS) of cpvar ! Cleaning time after batches
cycleTime: cpvar ! Objective variable
end-declarations

initializations from ’Data/b5paint.dat’
DUR CLEAN
end-initializations

forall(k in JOBS) setdomain(rank(k), JOBS)

! Cleaning time after every batch
forall(k in JOBS)
element(CLEAN, rank(k), if(k<NJ, rank(k+1), rank(1))) = clean(k)

! Objective: minimize the duration of a production cycle
cycleTime = sum(j in JOBS) DUR(j) + sum(k in JOBS) clean(k)

! One position for every job
all_different(rank)

! Solve the problem
if not cp_minimize(cycleTime) then
writeln("Problem is infeasible")
exit(1)
end-if
cp_show_stats

! Solution printing
writeln("Minimum cycle time: ", getsol(cycleTime))
writeln("Sequence of batches:\nBatch Duration Cleaning")
forall(k in JOBS)
writeln(" ", getsol(rank(k)), strfmt(DUR(getsol(rank(k))),8),

strfmt(getsol(clean(k)),9))

end-model

3.8.5 Results

The minimum cycle time for this problem is 243 minutes which is achieved with the following
sequence of batches: 1 → 4 → 3 → 5 → 2 → 1. This time includes 202 minutes of (incompress-
ible) processing time and 41 minutes of cleaning.

When comparing the problem statistics produced by Xpress-Kalis for this problem we see that
the second model is a weaker formulation resulting in a considerably longer enumeration
(using the default strategies).

3.9 equiv: Location of income tax offices

The example description in the following sections is taken from Section 15.5 ‘Location of in-
come tax offices’ of the book ‘Applications of optimization with Xpress-MP’.

The income tax administration is planning to restructure the network of income tax offices in
a region. The number of inhabitants of every city and the distances between each pair of cities
are known (Table 3.8). The income tax administration has determined that offices should be
established in three cities to provide sufficient coverage. Where should these offices be located
to minimize the average distance per inhabitant to the closest income tax office?
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Table 3.8: Distance matrix and population of cities

1 2 3 4 5 6 7 8 9 10 11 12

1 0 15 37 55 24 60 18 33 48 40 58 67

2 15 0 22 40 38 52 33 48 42 55 61 61

3 37 22 0 18 16 30 43 28 20 58 39 39

4 55 40 18 0 34 12 61 46 24 62 43 34

5 24 38 16 34 0 36 27 12 24 49 37 43

6 60 52 30 12 36 0 57 42 12 50 31 22

7 18 33 43 61 27 57 0 15 45 22 40 61

8 33 48 28 46 12 42 15 0 30 37 25 46

9 48 42 20 24 24 12 45 30 0 38 19 19

10 40 55 58 62 49 50 22 37 38 0 19 40

11 58 61 39 43 37 31 40 25 19 19 0 21

12 67 61 39 34 43 22 61 46 19 40 21 0

Pop. (in 1000) 15 10 12 18 5 24 11 16 13 22 19 20

3.9.1 Model formulation

Let CITIES be the set of cities. For the formulation of the problem, two groups of decision
variables are necessary: a variable buildc that is one if and only if a tax office is established
in city c, and a variable dependc that takes the number of the office on which city c depends.
For the formulation of the constraints, we further introduce two sets of auxiliary variables:
depdistc, the distance from city c to the office indicated by dependc, and numdepc, the number
of cities depending on an office location.

The following relations are required to link the buildc with the dependc variables:
(1) numdepc counts the number of occurrences of office location c among the variables dependc.
(2) numdepc ≥ 1 if and only if the office in c is built (as a consequence, if the office in c is not
built, then we must have numdepc = 0).

∀c ∈ CITIES : numdepc = |dependd = c|d∈CITIES

∀c ∈ CITIES : numdepc ≥ 1 ⇔ buildc = 1

Since the number of offices built is limited by the given bound NUMLOC∑
c∈CITIES

buildc ≤ NUMLOC

it would actually be sufficient to formulate the second relation between the buildc and dependc

variables as the implication ‘If numdepc ≥ 1 then the office in c must be built, and inversely, if
the office in c is not built, then we must have numdepc = 0’.

The objective function to be minimized is the total distance weighted by the number of inhab-
itants of the cities. We need to divide the resulting value by the total population of the region
to obtain the average distance per inhabitant to the closest income tax office. The distance
depdistc from city c to the closest tax office location is obtained by a discrete function, namely
the row c of the distance matrix DISTcd indexed by the value of dependc:

depdistc = DISTc,dependc

We now obtain the following CP model:

minimize
∑

c∈CITIES

POPc · distc

∀c ∈ CITIES : buildc ∈ {0, 1}, dependc ∈ CITIES,

numdepc ∈ CITIES ∪ {0}, depdistc ∈ {mind∈CITIESDISTc,d, . . . , maxd∈CITIESDISTc,d}
∀c ∈ CITIES : depdistc = DISTc,dependc
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∑
c∈CITIES

buildc ≤ NUMLOC

∀c ∈ CITIES : numdepc = |dependd = c|d∈CITIES

∀c ∈ CITIES : numdepc ≥ 1 ⇔ buildc = 1

3.9.2 Implementation

To solve this problem, we define a branching strategy with two parts, one for the buildc vari-
ables and a second strategy for the depdistc variables. The latter are enumerated using the
split_domain branching scheme that divides the domain of the branching variable into sev-
eral disjoint subsets (instead of assigning a value to the variable). We now pass an array of type
cpbranching as the argument to procedure cp_set_branching. The different strategies will
be applied in their order in this array. Since our enumeration strategy does not explicitly in-
clude all decision variables of the problem, Xpress-Kalis will enumerate these using the default
strategy if any unassigned variables remain after the application of our search strategy.

model "J-5 Tax office location (CP)"
uses "kalis"

forward procedure calculate_dist

setparam("DEFAULT_LB", 0)

declarations
NC = 12
CITIES = 1..NC ! Set of cities

DIST: array(CITIES,CITIES) of integer ! Distance matrix
POP: array(CITIES) of integer ! Population of cities
LEN: dynamic array(CITIES,CITIES) of integer ! Road lengths
NUMLOC: integer ! Desired number of tax offices
D: array(CITIES) of integer ! Auxiliary array used in constr. def.

build: array(CITIES) of cpvar ! 1 if office in city, 0 otherwise
depend: array(CITIES) of cpvar ! Office on which city depends
depdist: array(CITIES) of cpvar ! Distance to tax office
numdep: array(CITIES) of cpvar ! Number of depending cities per off.
totDist: cpvar ! Objective function variable
Strategy: array(1..2) of cpbranching ! Branching strategy
end-declarations

initializations from ’Data/j5tax.dat’
LEN POP NUMLOC
end-initializations

! Calculate the distance matrix
calculate_dist

forall(c in CITIES) do
build(c) <= 1
1 <= depend(c); depend(c) <= NC
min(d in CITIES) DIST(c,d) <= depdist(c)
depdist(c) <= max(d in CITIES) DIST(c,d)
numdep(c) <= NC
end-do

! Distance from cities to tax offices
forall(c in CITIES) do
forall(d in CITIES) D(d):=DIST(c,d)
element(D, depend(c)) = depdist(c)
end-do

! Number of cities depending on every office
forall(c in CITIES) occurrence(c, depend) = numdep(c)

! Relations between dependencies and offices built
forall(c in CITIES) equiv( build(c) = 1, numdep(c) >= 1 )

! Limit total number of offices
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sum(c in CITIES) build(c) <= NUMLOC

! Branching strategy
Strategy(1):= assign_and_forbid(KALIS_MAX_DEGREE, KALIS_MAX_TO_MIN, build)
Strategy(2):= split_domain(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX,

depdist, true, 5)
cp_set_branching(Strategy)

! Objective: weighted total distance
totDist = sum(c in CITIES) POP(c)*depdist(c)

! Solve the problem
if not cp_minimize(totDist) then
writeln("Problem is infeasible")
exit(1)
end-if

! Solution printing
writeln("Total weighted distance: ", getsol(totDist),

" (average per inhabitant: ",
getsol(totDist)/sum(c in CITIES) POP(c), ")")

forall(c in CITIES) if(getsol(build(c))>0) then
write("Office in ", c, ": ")
forall(d in CITIES) write(if(getsol(depend(d))=c, " "+d, ""))
writeln
end-if

!-----------------------------------------------------------------

! Calculate the distance matrix using Floyd-Warshall algorithm
procedure calculate_dist
! Initialize all distance labels with a sufficiently large value
BIGM:=sum(c,d in CITIES | exists(LEN(c,d))) LEN(c,d)
forall(c,d in CITIES) DIST(c,d):=BIGM

forall(c in CITIES) DIST(c,c):=0 ! Set values on the diagonal to 0

! Length of existing road connections
forall(c,d in CITIES | exists(LEN(c,d))) do
DIST(c,d):=LEN(c,d)
DIST(d,c):=LEN(c,d)
end-do

! Update shortest distance for every node triple
forall(b,c,d in CITIES | c<d )
if DIST(c,d) > DIST(c,b)+DIST(b,d) then
DIST(c,d):= DIST(c,b)+DIST(b,d)
DIST(d,c):= DIST(c,b)+DIST(b,d)
end-if

end-procedure

end-model

This implementation contains another example of the use of a subroutine in Mosel: the cal-
culation of the distance data is carried out in the procedure calculate_dist. We thus use
a subroutine to structure our model, removing secondary tasks from the main model formula-
tion.

3.9.3 Results

The optimal solution to this problem has a total weighted distance of 2438. Since the region
has a total of 185,000 inhabitants, the average distance per inhabitant is 2438/185 ≈ 13.178
km. The three offices are established at nodes 1, 6, and 11. The first serves cities 1, 2, 5, 7, the
office in node 6 cities 3, 4, 6, 9, and the office in node 11 cities 8, 10, 11, 12.

3.10 cycle: Paint production

In this section we work once more with the paint production problem from Section 3.8. The
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objective of this problem is to determine a production cycle of minimal length for a given set
of jobs with sequence-dependent cleaning times between every pair of jobs.

3.10.1 Model formulation

The problem formulation in Section 3.8 uses ’all-different’ constraints to ensure that every
job occurs once only, calculates the duration of cleaning times with ’element’ constraints, and
introduces auxiliary variables and constraints to prevent subcycles in the production sequence.
All these constraints can be expressed by a single constraint relation, the ’cycle’ constraint.

Let JOBS = {1, . . . , NJ} be the set of batches to produce, DURj the processing time for batch j,
and CLEANij the cleaning time between the consecutive batches i and j. As before we define
decision variables succj taking their values in JOBS, to indicate the successor of every job. The
complete model formulation is the following,

minimize
∑

j∈JOBS

DURj + cleantime

∀j ∈ JOBS : succj ∈ JOBS\{j}
cleantime = cycle((succj)j∈JOBS, (CLEANij)i,j∈JOBS)

where ’cycle’ stands for the relation ’sequence into a single cycle without subcycles or repeti-
tions’. The variable cleantime equals the total duration of the cycle.

3.10.2 Implementation

The Mosel model using the cycle constraint looks as follows.

model "B-5 Paint production (CP)"
uses "kalis"

setparam("DEFAULT_LB", 0)

declarations
NJ = 5 ! Number of paint batches (=jobs)
JOBS=0..NJ-1

DUR: array(JOBS) of integer ! Durations of jobs
CLEAN: array(JOBS,JOBS) of integer ! Cleaning times between jobs
CB: array(JOBS) of integer ! Cleaning times after a batch

succ: array(JOBS) of cpvar ! Successor of a batch
cleanTime,cycleTime: cpvar ! Durations of cleaning / complete cycle
end-declarations

initializations from ’Data/b5paint.dat’
DUR CLEAN
end-initializations

forall(j in JOBS) do
0 <= succ(j); succ(j) <= NJ-1; succ(j) <> j
end-do

! Assign values to ’succ’ variables as to obtain a single cycle
! ’cleanTime’ is the sum of the cleaning times
cycle(succ, cleanTime, CLEAN)

! Objective: minimize the duration of a production cycle
cycleTime = cleanTime +sum(j in JOBS) DUR(j)

! Solve the problem
if not cp_minimize(cycleTime) then
writeln("Problem is infeasible")
exit(1)
end-if
cp_show_stats
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! Solution printing
writeln("Minimum cycle time: ", getsol(cycleTime))
writeln("Sequence of batches:\nBatch Duration Cleaning")
first:=1
repeat
writeln(" ", first, strfmt(DUR(first),8),

strfmt(CLEAN(first,getsol(succ(first))),9) )
first:=getsol(succ(first))
until (first=1)

end-model

Notice that we have renumbered the tasks, starting the index range with 0, to conform with
the input format expected by the cycle constraint.

3.10.3 Results

The optimal solution to this problem has a minimum cycle time of 243 minutes, resulting from
202 minutes of (incompressible) processing time and 41 minutes of cleaning.

The problem statistics produced by Xpress-Kalis for a model run reveal that the ’cycle’ version
of this model is the most efficient way of representing and solving the problem: it takes fewer
nodes and a shorter execution time than the two versions of Section 3.8.

3.11 Generic binary constraints: Euler knight tour

Our task is to find a tour on a chessboard for a knight figure such that the knight moves
through every cell exactly once and at the end of the tour returns to its starting point. The path
of the knight must follow the standard chess rules: a knight moves either one cell vertically
and two cells horizontally, or two cells in the vertical and one cell in the horizontal direction,
as shown in the following graphic (Figure 3.3):

K

Figure 3.3: Permissible moves for a knight

3.11.1 Model formulation

To represent the chessboard we number the cells from 0 to N-1, where N is the number of cells
of the board. The path of the knight is defined by N variables posi that indicate the ith position
of the knight on its tour.

The first variable is fixed to zero as the start of the tour. Another obvious constraint we need
to state is that all variables posi take different values (every cell of the chessboard is visited
exactly once):

all-different(pos1, . . . , posN)
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We are now left with the necessity to establish a constraint relation that checks whether con-
secutive positions define a valid knight move. To this aim we define a new binary constraint
’valid_knight_move’ that checks whether a given pair of values defines a permissible move ac-
cording to the chess rules for knight moves. Vertically and horizontally, the two values must
be no more than two cells apart and the sum of the vertical and horizontal difference must be
equal to three. The complete model then looks as follows.

∀i ∈ PATH = {1, . . . , N} : posi ∈ {0, . . . , N − 1}
pos1 = 0

all-different(pos1, . . . , posN)

∀i ∈ POS = {1, . . . , N − 1} : valid_knight_move(posi, posi+1)

valid_knight_move(posN, pos1)

3.11.2 Implementation

Testing whether moving from position a to position b is a valid move for a knight figure can
be done with the following function valid_knight_move where ’div’ means integer division
without rest and ’mod’ is the rest of the integer division:

function valid_knight_move(a,b)

xa := a div E

ya := a mod E

xb := b div E

yb := b mod E

deltax := |xa− xb|
deltay := |ya− yb|
return ((deltax ≤ 2) and (deltay ≤ 2) and (deltax + deltay = 3))

end-function

The following Mosel model defines the user constraint function valid_knight_move as the
implementation of the new binary constraints on pairs of movep variables (the constraints are
established with generic_binary_constraint).

model "Euler Knight Moves"
uses "kalis"

parameters
S = 8 ! Number of rows/columns
NBSOL = 1 ! Number of solutions sought
end-parameters

forward procedure print_solution(sol: integer)

N:= S * S ! Total number of cells
setparam("DEFAULT_LB", 0)
setparam("DEFAULT_UB", N-1)

declarations
PATH = 1..N ! Cells on the chessboard
pos: array(PATH) of cpvar ! Cell at position p in the tour
end-declarations

! Fix the start position
pos(1) = 0

! Each cell is visited once
all_different(pos, KALIS_GEN_ARC_CONSISTENCY)

! The path of the knight obeys the chess rules for valid knight moves
forall(i in 1..N-1)
generic_binary_constraint(pos(i), pos(i+1), "valid_knight_move")
generic_binary_constraint(pos(N), pos(1), "valid_knight_move")

! Setting enumeration parameters
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cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN, KALIS_MAX_TO_MIN,
pos, 14))

! Search for up to NBSOL solutions
solct:= 0
while (solct<NBSOL and cp_find_next_sol) do
solct+=1
cp_show_stats
print_solution(solct)
end-do

! **** Test whether the move from position a to b is admissible ****
function valid_knight_move(a:integer, b:integer): boolean
declarations
xa,ya,xb,yb,delta_x,delta_y: integer
end-declarations

xa := a div S
ya := a mod S
xb := b div S
yb := b mod S
delta_x := abs(xa-xb)
delta_y := abs(ya-yb)
returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
end-function

!****************************************************************
! Solution printing
procedure print_solution(sol: integer)
writeln("Solution ", sol, ":")
forall(i in PATH)
write(getval(pos(i)), if(i mod 10 = 0, "\n ", ""), " -> ")
writeln("0")
end-procedure

end-model

The branching scheme used in this model is the probe_assign_var heuristic, in combination
with the variable selection KALIS_SMALLEST_MIN (choose variable with smallest lower bound)
and the value selection criterion KALIS_MAX_TO_MIN (from largest to smallest domain value).
Another search strategy that was found to work well (though slower than the strategy in the
code listing) is

cp_set_branching(assign_var(KALIS_SMALLEST_MIN, KALIS_MAX_TO_MIN, pos))

Our model defines two parameters. It is thus possible to change either the size of the chess-
board (S) or the number of solutions sought (NBSOL) when executing the model without hav-
ing to modify the model source.

3.11.3 Results

The first solution printed out by our model is the following tour.

0 -> 17 -> 34 -> 51 -> 36 -> 30 -> 47 -> 62 -> 45 -> 39
-> 54 -> 60 -> 43 -> 33 -> 48 -> 58 -> 52 -> 35 -> 41 -> 56
-> 50 -> 44 -> 38 -> 55 -> 61 -> 46 -> 63 -> 53 -> 59 -> 49
-> 32 -> 42 -> 57 -> 40 -> 25 -> 8 -> 2 -> 19 -> 4 -> 14
-> 31 -> 37 -> 22 -> 7 -> 13 -> 28 -> 18 -> 24 -> 9 -> 3
-> 20 -> 26 -> 16 -> 1 -> 11 -> 5 -> 15 -> 21 -> 6 -> 23
-> 29 -> 12 -> 27 -> 10 -> 0

3.11.4 Alternative implementation

Whereas the aim of the model above is to give an example of the definition of user constraints,
it is possible to implement this problem in a more efficient way using the model developed for
the cyclic scheduling problem in Section 3.10. The set of successors (domains of variables succp)

Constraints 51 Xpress-Kalis user guide



can be calculated using the same algorithm that we have used above in the implementation
of the user-defined binary constraints.

Without repeating the complete model definition at this place, we simply display the model
formulation, including the calculation of the sets of possible successors (procedure calculate_-
successors, and the modified procedure print_sol for solution printout. We use a simpler
version of the ’cycle’ constraints than the one we have seen in Section 3.10, its only argument
is the set of successor variables—there are no weights to the arcs in this problem.

model "Euler Knight Moves"
uses "kalis"

parameters
S = 8 ! Number of rows/columns
NBSOL = 1 ! Number of solutions sought
end-parameters

forward procedure calculate_successors(p: integer)
forward procedure print_solution(sol: integer)

N:= S * S ! Total number of cells
setparam("DEFAULT_LB", 0)
setparam("DEFAULT_UB", N)

declarations
PATH = 0..N-1 ! Cells on the chessboard
succ: array(PATH) of cpvar ! Successor of cell p
end-declarations

! Calculate set of possible successors
forall(p in PATH) calculate_successors(p)

! Each cell is visited once, no subtours
cycle(succ)

! Search for up to NBSOL solutions
solct:= 0
while (solct<NBSOL and cp_find_next_sol) do
solct+=1
cp_show_stats
print_solution(solct)
end-do

! **** Calculate possible successors ****
procedure calculate_successors(p: integer)
declarations
SuccSet: set of integer ! Set of successors
end-declarations

xp := p div S
yp := p mod S

forall(q in PATH) do
xq := q div S
yq := q mod S
delta_x := abs(xp-xq)
delta_y := abs(yp-yq)
if (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3) then
SuccSet +={q}
end-if
end-do

setdomain(succ(p), SuccSet)
end-procedure

!****************************************************************
! **** Solution printing ****
procedure print_solution(sol: integer)
writeln("Solution ", sol, ":")
thispos:=0
nextpos:=getval(succ(0))
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ct:=1
while (nextpos<>0) do
write(thispos, if(ct mod 10 = 0, "\n ", ""), " -> ")
val:=getval(succ(thispos))
thispos:=nextpos
nextpos:=getval(succ(thispos))
ct+=1
end-do
writeln("0")
end-procedure

end-model

The calculation of the domains for the succp variables reduces these to 2-8 elements (as com-
pared to the N = 64 values for every posp variables), which clearly reduces the search space for
this problem.

This second model finds the first solution to the problem after 131 nodes taking just a fraction
of a second to execute on a standard PC whereas the first model requires several thousand
nodes and considerably longer running times. It is possible to reduce the number of branch-
and-bound nodes even further by using yet another version of the ’cycle’ constraint that works
with successor and predecessor variables. This version of ’cycle’ performs a larger amount of
propagation, at the expense of (slightly) slower execution times for our problem. The proce-
dure calculate_successors now sets the domain of predp to the same values as succp for
all cells p.

declarations
PATH = 0..N-1 ! Cells on the chessboard
succ: array(PATH) of cpvar ! Successor of cell p
pred: array(PATH) of cpvar ! Predecessor of cell p
end-declarations

! Calculate sets of possible successors and predecessors
forall(p in PATH) calculate_successors(p)

! Each cell is visited once, no subtours
cycle(succ, pred)

Figure 3.4 shows the graphical display of a knight’s tour created with the ’user graph’ func-
tionality of IVE.
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Figure 3.4: Knight’s tour solution graph in IVE

3.11.5 Alternative implementation 2

Yet more efficient (a similar number of nodes with significantly shorter running times) is the
following model version using the ’cycle’ constraint described in Section 3.10. Since travel times
from one position to the next are irrelevant in this model we simply fix all coefficients for the
’cycle’ constraint to a constant and constrain the cycle length to the corresponding value.

All else, including the calculation of the sets of possible successors (procedure calculate_-
successors, and the procedure print_sol for solution printout is copied unchanged from
the previous model.

model "Euler Knight Moves"
uses "kalis"

parameters
S = 8 ! Number of rows/columns
NBSOL = 1 ! Number of solutions sought
end-parameters

forward procedure calculate_successors(p: integer)
forward procedure print_solution(sol: integer)

N:= S * S ! Total number of cells
setparam("DEFAULT_LB", 0)
setparam("DEFAULT_UB", N)

declarations
PATH = 0..N-1 ! Cells on the chessboard
succ: array(PATH) of cpvar ! Successor of cell p
end-declarations

! Calculate set of possible successors
forall(p in PATH) calculate_successors(p)

! Each cell is visited once, no subtours
cycle(succ)

! Search for up to NBSOL solutions
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solct:= 0
while (solct<NBSOL and cp_find_next_sol) do
solct+=1
cp_show_stats
print_solution(solct)
end-do

! **** Calculate possible successors ****
procedure calculate_successors(p: integer)
declarations
SuccSet: set of integer ! Set of successors
end-declarations

xp := p div S
yp := p mod S

forall(q in PATH) do
xq := q div S
yq := q mod S
delta_x := abs(xp-xq)
delta_y := abs(yp-yq)
if (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3) then
SuccSet +={q}
end-if
end-do

setdomain(succ(p), SuccSet)
end-procedure

!****************************************************************
! **** Solution printing ****
procedure print_solution(sol: integer)
writeln("Solution ", sol, ":")
thispos:=0
nextpos:=getval(succ(0))
ct:=1
while (nextpos<>0) do
write(thispos, if(ct mod 10 = 0, "\n ", ""), " -> ")
val:=getval(succ(thispos))
thispos:=nextpos
nextpos:=getval(succ(thispos))
ct+=1
end-do
writeln("0")
end-procedure

end-model
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Chapter 4

Enumeration

This chapter gives an overview on different issues related to the definition of search strategies
with Xpress-Kalis, namely

• predefined search strategies,

• means of interrupting and restarting the enumeration,

• search callbacks, and

• the definition of user search strategies.

4.1 Predefined search strategies

With Xpress-Kalis a branching strategy is composed of three components:

• The branching scheme determines the shape of the search tree, this includes exhaus-
tive schemes like assign_var and split_domain (enumeration of decision variables),
settle_disjunction (enumeration over constraints), and task_serialize (enumer-
ation of tasks in scheduling problems), or potentially incomplete searches with probe_-
assign_var or probe_settle_disjunction.

• The variable selection strategy determines the choice of the branching variables. Prede-
fined selection criteria include

KALIS_INPUT_ORDER variables in the given order,

KALIS_LARGEST_MAX variable with largest upper bound,

KALIS_LARGEST_MIN variable with largest lower bound,

KALIS_MAX_DEGREE variable occurring in the largest number of constraints,

KALIS_MAXREGRET_LB variable with largest difference between its lower bound
and second-smallest domain value,

KALIS_MAXREGRET_UB variable with largest difference between its upper bound
and second-largest domain value,

KALIS_RANDOM_VARIABLE random variable choice,

KALIS_SDOMDEG_RATIO variable with smallest ratio domain size / degree,

KALIS_SMALLEST_DOMAIN variable with smallest number of domain values/smallest
domainintervall,

KALIS_SMALLEST_MAX variable with smallest upper bound,

KALIS_SMALLEST_MIN variable with smallest lower bound).

KALIS_WIDEST_DOMAIN variable with largest number of domain values/largest
domain interval,
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The user may also define his own variable selection strategy (see Section 4.4.3 below).

• The value selection strategy determines the choice of the branching value once the vari-
able to be branched on is known. The following predefined selection criteria are avail-
able.

KALIS_MAX_TO_MIN enumeration of values in decreasing order,

KALIS_MIDDLE_VALUE enumerate first values in the middle of the variable’s do-
main,

KALIS_MIN_TO_MAX enumeration of values in increasing order,

KALIS_NEAREST_VALUE choose the value closest to a target value previously spec-
ified with settarget,

KALIS_RANDOM_VALUE choose a random value out of the variable’s domain.

The predefined criteria can be replaced by the user’s own value selection strategy (see
Section 4.4.3 below).

Depending on the choice of the branching scheme, it may be possible to specify additional
parameters to configure the enumeration. The reader is referred to the Xpress-Kalis refer-
ence manual for further detail. In the case of constraint branching, there is quite obviously
no variable or branching value selection. The special case of task-based branching strategies
(branching scheme task_serialize) is discussed in Section 5.7. Enumeration of continu-
ous variables (type cpfloatvar) always uses the branching scheme split_domain with the
KALIS_SMALLEST_DOMAIN or KALIS_WIDEST_DOMAIN variable selection (the former is used
by the default strategy, the latter often works better in purely continuous problems) and only
a subset of the value selection strategies listed above.

Branching strategies may be defined for certain specified variables (or, where applicable, con-
straints or tasks), or, if the corresponding argument of the branching scheme function is left
out, are applied to all decision variables in a model (see, for instance, model b4seq_ka.mos in
Section 3.5).

If the user’s model does not specify any branching strategy, then Xpress-Kalis will apply default
strategies to enumerate all variables in the model. Even if one does not wish to change the
default enumeration (for discrete variables: ‘smallest domain first’ and ‘smallest value first’), it
may still be desirable to define a branching strategy to fix a certain order for the enumeration
of different groups of decision variables. The previous chapter contains several examples of
this: in the model a4sugar_ka.mos (Section 3.6) we define an enumeration over some of
the variables of a model, giving them thus preference over the remainder. In model j5tax_-
ka.mos (Section 3.9) we have seen an example of a search strategy composed of different
enumerations for groups of decision variables.

If a model contains both, discrete and continuous variables (cpvar and cpfloatvar) the de-
fault strategies enumerate first the discrete and then the continuous variables.

4.2 Interrupting and restarting the search

When solving large applications it is often not possible to enumerate the complete search tree
within a reasonable time span. Several stopping criteria are therefore available in Xpress-Kalis
to interrupt the search. These are

MAX_BACKTRACKS maximum number of backtracks,

MAX_COMPUTATION_TIME limit on total time spent in search,

MAX_DEPTH maximum search tree depth,

MAX_NODES maximum number of nodes to explore,
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MAX_SOLUTIONS maximum number of solutions,

OPT_ABS_TOLERANCE absolute difference between the objective function value in a
solution and its best possible value (= current upper bound
on objective function in maximization problems and lower
bound with minimization),

OPT_REL_TOLERANCE relative difference between the objective function value in a
solution and its best possible value (= current upper bound
on objective function in maximization problems and lower
bound with minimization).

These parameters are accessed with the Mosel functions setparam and getparam (see, for
example, the output of problem statistics in model sudoku_ka.mos in Section 3.3, and the
search time limit set in the model freqasgn.mos of Section 3.4).

In optimization problems, after a solution has been found the search continues from this point
unless the setting of parameter OPTIMIZE_WITH_RESTART is changed. The same is true if
the search is interrupted by means of one of the above-named criteria and then continued,
for instance with a different search strategy. To restart the search from the root node the
procedure cp_reset_search needs to be called (as an example, see model freqasgn.mos in
Section 3.4)

4.3 Callbacks

During the search the user’s model may interact with the solver at certain predefined points
by means of callback functions. This functionality is particularly useful to retrieve solution
information for intermediate solutions during an optimization run as shown in the model
freqasgn.mos (Section 3.4). Other than this solution callback, the user may set functions
that will be called at every branch or at every node (see the Xpress-Kalis reference manual for
further detail).

4.4 User-defined enumeration strategies

The following problem description is taken from Section 14.1 of ‘Applications of optimization
with Xpress-MP’.

An operator needs to be assigned to each of the six machines in a workshop. Six workers have
been pre-selected. Everyone has undergone a test of her productivity on every machine. Table
4.1 lists the productivities in pieces per hour. The machines run in parallel, that is, the total
productivity of the workshop is the sum of the productivities of the people assigned to the
machines.

Table 4.1: Productivity in pieces per hour

Machines

Workers 1 2 3 4 5 6

1 13 24 31 19 40 29

2 18 25 30 15 43 22

3 20 20 27 25 34 33

4 23 26 28 18 37 30

5 28 33 34 17 38 20

6 19 36 25 27 45 24

The objective is to determine an assignment of workers to machines that maximizes the total
productivity. We may start by calculating a (non-optimal) heuristic solution using the following
fairly natural method: choose the assignment p → m with the highest productivity, cross out
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the line p and the column m (since the person has been placed and the machine has an oper-
ator), and restart this process until we have assigned all persons—the resulting assignment is
highlighted in bold print in the data table. However, our aim really is to solve this problem to
optimality for the case of parallel machines and also for machines working in series.

4.4.1 Model formulation

This problem type is well known under the name of the assignment problem. Let PERS be
the set of workers, MACH the set of machines (both of the same size N), and OUTPpm the
productivity of worker p on machine m. We define N integer variables assignp taking values in
the set of machines, where assignp denotes the number of the machine to which the person
p is assigned. The fact that a person p is assigned to a single machine m and a machine m is
operated by a single person p is then expressed by the constraint that all variables assignp take
different values.

∀p ∈ PERS : assignp ∈ MACH

all-different

( ⋃
m∈MACH

assignp

)

Furthermore, let outputp denote the output produced by person p. The values of these vari-
ables are obtained as discrete functions in the assignp variables:

∀p ∈ PERS : outputp = OUTPp,assignp

4.4.1.1 Parallel machine assignment

The objective function to be maximized sums the outputp variables.

maximize
∑

p∈PERS

outputp

Certain assignments may be infeasible. In such a case, the value of the corresponding machine
needs to be removed from the domain of the variable assignp.

4.4.1.2 Machines working in series

If the machines work in series, the least productive worker on the machine she has been as-
signed to determines the total productivity of the workshop. An assignment will still be de-
scribed by N variables assignp and an all-different constraint on these variables. We also have
the outputp variables with the constraints linking them to the values of the assignp variables
from the previous model. To this we add a variable pmin for the minimum productivity. The
objective is to maximize pmin. This type of optimization problem where one wants to maxi-
mize a minimum is called maximin, or bottleneck.

maximize pmin

pmin = minimump∈PERS(outputp)

4.4.2 Implementation

The following Mosel program first implements and solves the model for the case of parallel
machines. Afterwards, we define the variable pmin that is required for solving the problem
for the case that the machines work in series.

model "I-1 Personnel assignment (CP)"
uses "kalis"
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forward procedure parallel_heur
forward procedure print_sol(text1,text2:string, objval:integer)

declarations
PERS = 1..6 ! Personnel
MACH = 1..6 ! Machines
OUTP: array(PERS,MACH) of integer ! Productivity
end-declarations

initializations from ’Data/i1assign.dat’
OUTP
end-initializations

! **** Exact solution for parallel machines ****

declarations
assign: array(PERS) of cpvar ! Machine assigned to a person
output: array(PERS) of cpvar ! Productivity of every person
totalProd: cpvar ! Total productivity
O: array(MACH) of integer ! Auxiliary array for constraint def.
Strategy: cpbranching ! Branching strategy
end-declarations

forall(p in PERS) setdomain(assign(p), MACH)

! Calculate productivity per worker
forall(p in PERS) do
forall(m in MACH) O(m):= OUTP(p,m)
element(O, assign(p)) = output(p)
end-do

! Calculate total productivity
totalProd = sum(p in PERS) output(p)

! One person per machine
all_different(assign)

! Branching strategy
Strategy:= assign_var(KALIS_LARGEST_MAX, KALIS_MAX_TO_MIN, output)
cp_set_branching(Strategy)

! Solve the problem
if cp_maximize(totalProd) then
print_sol("Exact solution (parallel assignment)", "Total", getsol(totalProd))
end-if

! **** Exact solution for serial machines ****

declarations
pmin: cpvar ! Minimum productivity
end-declarations

! Calculate minimum productivity
pmin = minimum(output)

! Branching strategy
Strategy:= assign_var(KALIS_SMALLEST_MIN, KALIS_MAX_TO_MIN, output)
cp_set_branching(Strategy)

! Solve the problem
if cp_maximize(pmin) then
print_sol("Exact solution (serial machines)", "Minimum", getsol(pmin))
end-if

When the solution to the parallel assignment problem is found, we print out the solution and
re-start the search with a new branching strategy and a new objective function. Since the first
search has finished completely (no interruption by a time limit, etc.) there is no need to reset
the solver between the two runs.

The branching strategy chosen for the parallel assignment problem is inspired by the intuitive
procedure described in the introduction to Section 4.4: instead of enumerating the possible as-
signments of workers to machines (= enumeration of the assignp variables) we define an enu-
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meration over the outputp variables, choosing the variable with the largest remaining value
(KALIS_LARGEST_MAX) and branch on its values in decreasing order (KALIS_MAX_TO_MIN). For
the second problem we need to proceed differently: to avoid being left with a small produc-
tivity value for some worker p we pick first the outputp variable with the smallest lower bound
(KALIS_SMALLEST_MIN); again we enumerate the values starting with the largest one.

The following procedure parallel_heur may be added to the above program. It heuristi-
cally calculates a (non-optimal) solution to the parallel assignment problem using the intuitive
procedure described in the introduction to Section 4.4.

procedure parallel_heur
declarations
ALLP, ALLM: set of integer ! Copies of sets PERS and MACH
HProd: integer ! Total productivity value
pmax,omax,mmax: integer
end-declarations

! Copy the sets of workers and machines
forall(p in PERS) ALLP+={p}
forall(m in MACH) ALLM+={m}

! Assign workers to machines as long as there are unassigned persons
while (ALLP<>{}) do
pmax:=0; mmax:=0; omax:=0

! Find the highest productivity among the remaining workers and machines
forall(p in ALLP, m in ALLM)
if OUTP(p,m) > omax then
omax:=OUTP(p,m)
pmax:=p; mmax:=m
end-if

assign(pmax) = mmax ! Assign chosen machine to person pmax
ALLP-={pmax}; ALLM-={mmax} ! Remove person and machine from sets
end-do

writeln("Heuristic solution (parallel assignment):")
forall(p in PERS)
writeln(" ",p, " operates machine ", getval(assign(p)),

" (",getval(output(p)), ")")
writeln(" Total productivity: ", getval(totalProd))
end-procedure

The model is completed with a procedure for printing out the solution in a properly formatted
way.

procedure print_sol(text1,text2:string, objval:integer)
writeln(text1,":")
forall(p in PERS)
writeln(" ",p, " operates machine ", getsol(assign(p)),

" (",getsol(output(p)), ")")
writeln(" ", text2, " productivity: ", objval)
end-procedure

end-model

4.4.3 User search

Instead of using predefined variable and value selection criteria as shown in all previous model
implementations we may choose to define our own search heuristics. We now show how to
implement the search strategies from the previous model ‘by hand.’ In our implementation we
add each time a second criterion for breaking ties in cases where the main criterion applies to
several variables at a time.

Variable selection: the variable selection function has a fixed format—it receives as its argu-
ment a list of variables of type cpvarlist and it returns an integer, the list index of the chosen
branching variable. The list of variables passed into the function may contain variables that
are already instantiated. As a first step in our implementation we, therefore, determine the
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set Vset of yet uninstantiated variables—or to be more precise, the set of their indices in the
list. The entries of the list of variables are accessed with the function getvar. Among the
uninstantiated variables we calculate the set of variables Iset with the largest upper bound
value (using function getub). Finally, among these variables, we choose the one with the small-
est second-largest value (this corresponds to a maximum regret strategy). Predecessor (next-
smallest) values in the domain of a decision variable are obtained with the function getprev.
Inversely, we have function getnext for an enumeration of domain values in ascending order.
The chosen index value is assigned to returned as the function’s return value.

function varchoice(Vars: cpvarlist): integer
declarations
Vset,Iset: set of integer
end-declarations

! Set of uninstantiated variables
forall(i in 1..getsize(Vars))
if not is_fixed(getvar(Vars,i)) then Vset+= {i}; end-if

if Vset={} then
returned:= 0
else
! Get the variable(s) with largest upper bound
dmax:= max(i in Vset) getub(getvar(Vars,i))
forall(i in Vset)
if getub(getvar(Vars,i)) = dmax then Iset+= {i}; end-if
dmin:= dmax

! Choose variable with smallest next-best value among those indexed by ’Iset’
forall(i in Iset) do
prev:= getprev(getvar(Vars,i),dmax)
if prev < dmin then
returned:= i
dmin:= prev
end-if
end-do
end-if
end-function

The variable selection strategy varchoicemin for the second optimization run (serial ma-
chines) is implemented in a similar way. We first establish the set of variables with the smallest
lower bound value (using getlb), Iset; among these we choose the variable with the smallest
upper bound (getub).

function varchoicemin(Vars: cpvarlist): integer
declarations
Vset,Iset: set of integer
end-declarations

! Set of uninstantiated variables
forall(i in 1..getsize(Vars))
if not is_fixed(getvar(Vars,i)) then Vset+= {i}; end-if

if Vset={} then
returned:= 0
else
! Get the variable(s) with smallest lower bound
dmin:= min(i in Vset) getlb(getvar(Vars,i))
forall(i in Vset)
if getlb(getvar(Vars,i)) = dmin then Iset+= {i}; end-if

! Choose variable with smallest upper bound among those indexed by ’Iset’
dmax:= getparam("default_ub")
forall(i in Iset)
if getub(getvar(Vars,i)) < dmax then
returned:= i
dmax:= getub(getvar(Vars,i))
end-if

end-if
end-function
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Value selection: the value selection function receives as its argument the chosen branching
variable and returns a branching value for this variable. The value selection criterion we have
chosen (corresponding to KALIS_MAX_TO_MIN) is to enumerate all values for the branching
variable, starting with the largest remaining one (that is, the variable’s upper bound):

function valchoice(x: cpvar): integer
returned:= getub(x)
end-function

Notice that with an assign_var or assign_and_forbid strategy, the user’s value selection
strategy should make sure to return a value that is currently in the branching variable’s domain
(a value chosen between the lower and upper bound is not guaranteed to lie in the domain)
by using function contains.

Setting user search strategies: to indicate that we wish to use our own variable or value se-
lection strategy we simply need to replace the predefined constants by the name of our Mosel
functions:

Strategy:= assign_var("varchoice", "valchoice", output)

defines the strategy for the first optimization run and

Strategy:= assign_var("varchoicemin", "valchoice", output)

re-defines it for the serial machine case. Since our function valchoice does just the same as
the KALIS_MAX_TO_MIN criterion, we could also combine it with our variable choice function:

Strategy:= assign_var("varchoicemin", KALIS_MAX_TO_MIN, output)

4.4.4 Results

The following table summarizes the results found with the different solution methods for
the two problems of parallel and serial machines. There is a notable difference between the
heuristic method and the exact solution to the problem with parallel machines.

Table 4.2: Optimal assignments for different model versions

Person

Alg. 1 2 3 4 5 6 Productivity

Parallel Machines Heur. 4 (19) 1 (18) 6 (33) 2 (26) 3 (34) 5 (45) 175

Exact 3 (31) 5 (43) 4 (25) 6 (30) 1 (28) 2 (36) 193

Serial Machines Exact 5 (40) 3 (30) 6 (33) 2 (26) 1 (28) 4 (27) 26

By adding output of solver statistics to our model (cp_show_stats) or consulting the CP stats
display in IVE we find that our user search strategies result in the same search trees and pro-
gram execution durations as with the predefined strategies for the parallel assignment and
arrive at a slightly different solution for the serial case.
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Chapter 5

Scheduling

This chapter shows how to

• define and setup the modeling objects cptask and cpresource,

• formulate and solve scheduling problems using these objects,

• access information from the modeling objects.

5.1 Tasks and resources

Scheduling and planning problems are concerned with determining a plan for the execution
of a given set of tasks. The objective may be to generate a feasible schedule that satisfies the
given constraints (such as sequence of tasks or limited resource availability) or to optimize a
given criterion such as the makespan of the schedule.

Xpress-Kalis defines several aggregate modeling objects to simplify the formulation of stan-
dard scheduling problems: tasks (processing operations, activities) are represented by the type
cptask and resources (machines, raw material etc.) by the type cpresource. When working
with these scheduling objects it is often sufficient to state the objects and their properties, such
as task duration or resource use; the necessary constraint relations are set up automatically by
Xpress-Kalis (referred to as implicit constraints). In the following sections we show a number
of examples using this mechanism:

• The simplest case of a scheduling problem involves only tasks and precedence constraints
between tasks (project scheduling problem in Section 5.2).

• Tasks may be mutually exclusive, e.g. because they use the same unitary resource (dis-
junctive scheduling / sequencing problem in Section 5.3).

• Resources may be usable by several tasks at a time, up to a given capacity limit (cumulative
resources, see Section 5.4).

• A different classification of resources is the distinction between renewable and non-
renewable resources (see Section 5.5).

• Many extensions of the standard problems are possible, such as sequence-dependent
setup time (see Section 5.6).

If the enumeration is started with the function cp_schedule the solver will employ specialized
search strategies suitable for the corresponding (scheduling) problem type. It is possible to
parameterize these strategies or to define user search strategies for scheduling objects (see
Section 5.7). Alternatively, the standard optimization functions cp_minimize / cp_maximize
may be used. In this case the enumeration does not exploit the structural information provided
by the scheduling objects and works simply with decision variables.

64 Xpress-Kalis user guide



The properties of scheduling objects (such as start time or duration of tasks) can be accessed
and employed, for instance, in the definition of constraints, thus giving the user the possibility
to extend the predefined standard problems with other types of constraints. For even greater
flexibility Xpress-Kalis also enables the user to formulate his scheduling problems without the
aggregate modeling objects, using dedicated global constraints on decision variables of type
cpvar. Most examples in this chapter are therefore given with two different implementations,
one using the scheduling objects and another without these objects.

5.2 Precedences

Probably the most basic type of a scheduling problem is to plan a set of tasks that are linked
by precedence constraints.

The problem described in this section is taken from Section 7.1 ‘Construction of a stadium’ of
the book ‘Applications of optimization with Xpress-MP’

A construction company has been awarded a contract to construct a stadium and wishes to
complete it within the shortest possible time. Table 5.1 lists the major tasks and their dura-
tions in weeks. Some tasks can only start after the completion of certain other tasks, equally
indicated in the table.

Table 5.1: Data for stadium construction

Task Description Duration Predecessors

1 Installing the construction site 2 none

2 Terracing 16 1

3 Constructing the foundations 9 2

4 Access roads and other networks 8 2

5 Erecting the basement 10 3

6 Main floor 6 4,5

7 Dividing up the changing rooms 2 4

8 Electrifying the terraces 2 6

9 Constructing the roof 9 4,6

10 Lighting of the stadium 5 4

11 Installing the terraces 3 6

12 Sealing the roof 2 9

13 Finishing the changing rooms 1 7

14 Constructing the ticket office 7 2

15 Secondary access roads 4 4,14

16 Means of signalling 3 8,11,14

17 Lawn and sport accessories 9 12

18 Handing over the building 1 17

5.2.1 Model formulation

This problem is a classical project scheduling problem. We add a fictitious task with 0 duration
that corresponds to the end of the project. We thus consider the set of tasks TASKS = {1, . . . , N}
where N is the fictitious end task.

Every construction task j (j ∈ TASKS) is represented by a task object taskj with variable start
time taskj. start and a duration fixed to the given value DURj. The precedences between tasks
are represented by a precedence graph with arcs (i, j) symbolizing that task i precedes task j.

The objective is to minimize the completion time of the project, that is the start time of the
last, fictitious task N. We thus obtain the following model where an upper bound HORIZON
on the start times is given by the sum of all task durations:

tasks taskj(j ∈ TASKS)

Scheduling 65 Xpress-Kalis user guide

http://www.dashoptimization.com/home/services/publications/applications_book.html


minimize taskN. start

∀j ∈ TASKS : taskj. start ∈ {0, . . . , HORIZON}
∀j ∈ TASKS : taskj. duration = DURj

∀j ∈ TASKS : taskj. predecessors =
⋃

i∈TASKS,s.t.∃ARCij

{taski}

5.2.2 Implementation

The following model shows the implementation of this problem with Xpress-Kalis. Since there
are no side-constraints, the earliest possible completion time of the schedule is the earliest
start of the fictitious task N. To trigger the propagation of task-related constraints we call
the function cp_propagate. At this point, constraining the start of the fictitious end task to
its lower bound reduces all task start times to their feasible intervals through the effect of
constraint propagation. The start times of tasks on the critical path are fixed to a single value.
The subsequent call to minimization only serves for instantiating all variables with a single
value so as to enable the graphical representation of the solution within IVE.

model "B-1 Stadium construction (CP)"
uses "kalis"

declarations
N = 19 ! Number of tasks in the project

! (last = fictitious end task)
TASKS = 1..N
ARC: array(range,range) of integer ! Matrix of the adjacency graph
DUR: array(TASKS) of integer ! Duration of tasks
HORIZON : integer ! Time horizon

task: array(TASKS) of cptask ! Tasks to be planned
bestend: integer
end-declarations

initializations from ’Data/b1stadium.dat’
DUR ARC
end-initializations

HORIZON:= sum(j in TASKS) DUR(j)

! Setting up the tasks
forall(j in TASKS) do
setdomain(getstart(task(j)), 0, HORIZON) ! Time horizon for start times
set_task_attributes(task(j), DUR(j)) ! Duration
setsuccessors(task(j), union(i in TASKS | exists(ARC(j,i))) {task(i)})
end-do ! Precedences

if not cp_propagate then
writeln("Problem is infeasible")
exit(1)
end-if

! Since there are no side-constraints, the earliest possible completion
! time is the earliest start of the fictitiuous task N
bestend:= getlb(getstart(task(N)))
getstart(task(N)) <= bestend
writeln("Earliest possible completion time: ", bestend)

! For tasks on the critical path the start/completion times have been fixed
! by setting the bound on the last task. For all other tasks the range of
! possible start/completion times gets displayed.
forall(j in TASKS) writeln(j, ": ", getstart(task(j)))

! Complete enumeration: schedule every task at the earliest possible date
result:= cp_minimize(getstart(task(N)))
forall(j in TASKS) writeln(j, ": ", getstart(task(j)))

end-model
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Instead of indicating the predecessors of a task, we may just as well state the precedence
constraints by indicating the sets of successors for every task:

setsuccessors(task(j), union(i in TASKS | exists(ARC(j,i))) {task(i)})

5.2.3 Results

The earliest completion time of the stadium construction is 64 weeks.

Users of IVE will notice that the execution of this model opens a special window, the CP dash-
board, with a graphical display of the solution (see Figure 5.1). Hovering over the displayed
chart will open pop-up boxes with detailed information about the tasks. Clicking on a task will
display all task-related information in a separate window. It is possible to hide this window by

clicking on the CP dashboard hide/unhide button .

Figure 5.1: CP dashboard in IVE displaying the solution

5.2.4 Alternative formulation without scheduling objects

As for the previous formulation, we work with a set of tasks TASKS = {1, . . . , N} where N is the
fictitious end task. For every task j we introduce a decision variable startj to denote its start
time. With DURj the duration of task j, the precedence relation ‘task i precedes task j’ is stated
by the constraint

starti + DURi ≤ startj

We therefore obtain the following model for our project scheduling problem:

minimize startN

∀j ∈ TASKS : startj ∈ {0, . . . , HORIZON}
∀i, j ∈ TASKS,∃ARCij : starti + DURi ≤ startj

The corresponding Mosel model is printed in full below. Notice that we have used explicit
posting of the precedence constraints—in the case of an infeasible data instance this may help
tracing the cause of the infeasibility.

model "B-1 Stadium construction (CP)"
uses "kalis"

declarations
N = 19 ! Number of tasks in the project
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! (last = fictitious end task)
TASKS = 1..N
ARC: array(range,range) of integer ! Matrix of the adjacency graph
DUR: array(TASKS) of integer ! Duration of tasks
HORIZON : integer ! Time horizon

start: array(TASKS) of cpvar ! Start dates of tasks
bestend: integer
end-declarations

initializations from ’Data/b1stadium.dat’
DUR ARC
end-initializations

HORIZON:= sum(j in TASKS) DUR(j)

forall(j in TASKS) do
0 <= start(j); start(j) <= HORIZON
end-do

! Task i precedes task j
forall(i, j in TASKS | exists(ARC(i, j))) do
Prec(i,j):= start(i) + DUR(i) <= start(j)
if not cp_post(Prec(i,j)) then
writeln("Posting precedence ", i, "-", j, " failed")
exit(1)
end-if
end-do

! Since there are no side-constraints, the earliest possible completion
! time is the earliest start of the fictitiuous task N
bestend:= getlb(start(N))
start(N) <= bestend
writeln("Earliest possible completion time: ", bestend)

! For tasks on the critical path the start/completion times have been fixed
! by setting the bound on the last task. For all other tasks the range of
! possible start/completion times gets displayed.
forall(j in TASKS) writeln(j, ": ", start(j))

end-model

5.3 Disjunctive scheduling: unary resources

The problem of sequencing jobs on a single machine described in Section 3.5 may be repre-
sented as a disjunctive scheduling problem using the ‘task’ and ‘resource’ modeling objects.

The reader is reminded that the problem is to schedule the processing of a set of non-preemptive
tasks (or jobs) on a single machine. For every task j its release date, duration, and due date are
given. The problem is to be solved with three different objectives, minimizing the makespan,
the average completion time, or the total tardiness.

5.3.1 Model formulation

The major part of the model formulation consists of the definition of the scheduling objects
‘tasks’ and ‘resources’.

Every job j (j ∈ JOBS = {1, . . . , NJ}) is represented by a task object taskj, with a start time
taskj. start in {RELj, . . . , MAXTIME} (where MAXTIME is a sufficiently large value, such as the
sum of all release dates and all durations, and RELj the release date of job j) and the task
duration taskj. duration fixed to the given processing time DURj. All jobs use the same resource
res of unitary capacity. This means that at most one job may be processed at any one time, we
thus implicitly state the disjunctions between the jobs.

Another implicit constraint established by the task objects is the relation between the start,
duration, and completion time of a job j.

∀j ∈ JOBS : taskj. end = taskj. start + taskj. duration
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Objective 1: The first objective is to minimize the makespan (completion time of the schedule)
or, equivalently, to minimize the completion time finish of the last job. The complete model is
then given by the following (where MAXTIME is a sufficiently large value, such as the sum of
all release dates and all durations):

resource res

tasks taskj(j ∈ JOBS)

minimize finish

finish = maximumj∈JOBS(taskj. end)

res. capacity = 1

∀j ∈ JOBS : taskj. end ∈ {0, . . . , MAXTIME}
∀j ∈ JOBS : taskj. start ∈ {RELj, . . . , MAXTIME}
∀j ∈ JOBS : taskj. duration = DURj

∀j ∈ JOBS : taskj. requirementres = 1

Objective 2: The formulation of the second objective (minimizing the average processing time
or, equivalently, minimizing the sum of the job completion times) remains unchanged from
the first model—we introduce an additional variable totComp representing the sum of the
completion times of all jobs.

minimize totComp

totComp =
∑

j∈JOBS

taskj. end

Objective 3: To formulate the objective of minimizing the total tardiness, we introduce new
variables latej to measure the amount of time that a job finishes after its due date. The value
of these variables corresponds to the difference between the completion time of a job j and
its due date DUEj. If the job finishes before its due date, the value must be zero. The objective
now is to minimize the sum of these tardiness variables:

minimize totLate

totLate =
∑

j∈JOBS

latej

∀j ∈ JOBS : latej ∈ {0, . . . , MAXTIME}
∀j ∈ JOBS : latej ≥ taskj. end − DUEj

5.3.2 Implementation

The following implementation with Xpress-Kalis (file b4seq3_ka.mos) shows how to set up
the necessary task and resource modeling objects. The resource capacity is set with procedure
set_resource_attributes (the resource is of the type KALIS_UNARY_RESOURCE meaning
that it processes at most one task at a time), for the tasks we use the procedure set_task_-
attributes. The latter exists in several overloaded versions for different combinations of
arguments (task attributes)—the reader is referred to the Xpress-Kalis Reference Manual for
further detail.

For the formulation of the maximum constraint we use an (auxiliary) list of variables: Xpress-
Kalis does not allow the user to employ the access functions to modeling objects (getstart,
getduration, etc.) in set expressions such as union(j in JOBS) getend(task(j)).

model "B-4 Sequencing (CP)"
uses "kalis"

forward procedure print_sol
forward procedure print_sol3
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declarations
NJ = 7 ! Number of jobs
JOBS=1..NJ

REL: array(JOBS) of integer ! Release dates of jobs
DUR: array(JOBS) of integer ! Durations of jobs
DUE: array(JOBS) of integer ! Due dates of jobs

task: array(JOBS) of cptask ! Tasks (jobs to be scheduled)
res: cpresource ! Resource (machine)

finish: cpvar ! Completion time of the entire schedule
end-declarations

initializations from ’Data/b4seq.dat’
DUR REL DUE
end-initializations

! Setting up the resource (formulation of the disjunction of tasks)
set_resource_attributes(res, KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks (durations and disjunctions)
forall(j in JOBS) set_task_attributes(task(j), DUR(j), res)

MAXTIME:= max(j in JOBS) REL(j) + sum(j in JOBS) DUR(j)

forall(j in JOBS) do
0 <= getstart(task(j)); getstart(task(j)) <= MAXTIME
0 <= getend(task(j)); getend(task(j)) <= MAXTIME
end-do

! Start times
forall(j in JOBS) getstart(task(j)) >= REL(j)

!**** Objective function 1: minimize latest completion time ****
declarations
L: cpvarlist
end-declarations

forall(j in JOBS) L += getend(task(j))
finish = maximum(L)

if cp_schedule(finish) >0 then
print_sol
end-if

!**** Objective function 2: minimize average completion time ****
declarations
totComp: cpvar
end-declarations

totComp = sum(j in JOBS) getend(task(j))

if cp_schedule(totComp) > 0 then
print_sol
end-if

!**** Objective function 3: minimize total tardiness ****
declarations
late: array(JOBS) of cpvar ! Lateness of jobs
totLate: cpvar
end-declarations

forall(j in JOBS) do
0 <= late(j); late(j) <= MAXTIME
end-do

! Late jobs: completion time exceeds the due date
forall(j in JOBS) late(j) >= getend(task(j)) - DUE(j)

totLate = sum(j in JOBS) late(j)
if cp_schedule(totLate) > 0 then
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writeln("Tardiness: ", getsol(totLate))
print_sol
print_sol3
end-if

!-----------------------------------------------------------------

! Solution printing
procedure print_sol
writeln("Completion time: ", getsol(finish) ,

" average: ", getsol(sum(j in JOBS) getend(task(j))))
write("Rel\t")
forall(j in JOBS) write(strfmt(REL(j),4))
write("\nDur\t")
forall(j in JOBS) write(strfmt(DUR(j),4))
write("\nStart\t")
forall(j in JOBS) write(strfmt(getsol(getstart(task(j))),4))
write("\nEnd\t")
forall(j in JOBS) write(strfmt(getsol(getend(task(j))),4))
writeln
end-procedure

procedure print_sol3
write("Due\t")
forall(j in JOBS) write(strfmt(DUE(j),4))
write("\nLate\t")
forall(j in JOBS) write(strfmt(getsol(late(j)),4))
writeln
end-procedure

end-model

5.3.3 Results

This model produces similar results as those reported for the model versions in Section 3.5.
Figure 5.2 shows the Gantt chart display of the solution created by IVE. Above the Gantt chart
we can see the resource usage display: the machine is used without interruption by the tasks,
that is, even if we relaxed the constraints given by the release times and due dates it would
not have been possible to generate a schedule terminating earlier.

Figure 5.2: Solution display in IVE

5.4 Cumulative scheduling: discrete resources

The problem described in this section is taken from Section 9.4 ‘Backing up files’ of the book
‘Applications of optimization with Xpress-MP’

Our task is to save sixteen files of the following sizes: 46kb, 55kb, 62kb, 87kb, 108kb, 114kb,
137kb, 164kb, 253kb, 364kb, 372kb, 388kb, 406kb, 432kb, 461kb, and 851kb onto empty disks
of 1.44Mb capacity. How should the files be distributed in order to minimize the number of
floppy disks used?
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5.4.1 Model formulation

This problem belongs to the class of binpacking problems. We show here how it may be
formulated and solved as a cumulative scheduling problem, where the disks are the resource
and the files the tasks to be scheduled.

The floppy disks may be represented as a single, discrete resource disks, where every time unit
stands for one disk. The resource capacity corresponds to the disk capacity.

We represent every file f (f ∈ FILES) by a task object filef , with a fixed duration of 1 unit and
a resource requirement that corresponds to the given size SIZEf of the file. The ‘start’ field of
the task then indicates the choice of the disk for saving this file.

The objective is to minimize the number of disks that are used, which corresponds to minimiz-
ing the largest value taken by the ‘start’ fields of the tasks (that is, the number of the disk used
for saving a file). We thus have the following model.

resource disks

tasks filesf (f ∈ FILES)

minimize diskuse

diskuse = maximumf∈FILES(filef . start)

disks. capacity = CAP

∀f ∈ FILES : filef . start ≥ 1

∀f ∈ FILES : filef . duration = 1

∀f ∈ FILES : filef . requirementdisks = SIZEf

5.4.2 Implementation

The implementation with Xpress-Kalis is quite straightforward. We define a resource of the
type KALIS_DISCRETE_RESOURCE, indicating its total capacity. The definition of the tasks is
similar to what we have seen in the previous example.

model "D-4 Bin packing (CP)"
uses "kalis"

declarations
ND: integer ! Number of floppy disks
FILES = 1..16 ! Set of files
DISKS: range ! Set of disks

CAP: integer ! Floppy disk size
SIZE: array(FILES) of integer ! Size of files to be saved

file: array(FILES) of cptask ! Tasks (= files to be saved)
disks: cpresource ! Resource representing disks
L: cpvarlist
diskuse: cpvar ! Number of disks used
end-declarations

initializations from ’Data/d4backup.dat’
CAP SIZE
end-initializations

! Provide a sufficiently large number of disks
ND:= ceil((sum(f in FILES) SIZE(f))/CAP)
DISKS:= 1..ND

! Setting up the resource (capacity limit of disks)
set_resource_attributes(disks, KALIS_DISCRETE_RESOURCE, CAP)

! Setting up the tasks
forall(f in FILES) do
setdomain(getstart(file(f)), DISKS) ! Start time (= choice of disk)
set_task_attributes(file(f), disks, SIZE(f)) ! Resource (disk space) req.
set_task_attributes(file(f), 1) ! Duration (= number of disks used)
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end-do

! Limit the number of disks used
forall(f in FILES) L += getstart(file(f))
diskuse = maximum(L)

! Minimize the total number of disks used
if cp_schedule(diskuse) = 0 then
writeln("Problem infeasible")
end-if

! Solution printing
writeln("Number of disks used: ", getsol(diskuse))
forall(d in 1..getsol(diskuse)) do
write(d, ":")
forall(f in FILES) write( if(getsol(getstart(file(f)))=d , " "+SIZE(f), ""))
writeln(" space used: ",

sum(f in FILES | getsol(getstart(file(f)))=d) SIZE(f))
end-do
cp_show_stats

end-model

5.4.3 Results

Running the model results in the solution shown in Table 5.2, that is, 3 disks are needed for
backing up all the files.

Table 5.2: Distribution of files to disks

Disk File sizes (in kb) Used space (in Mb)

1 46 87 137 164 253 364 388 1.439

2 55 62 108 372 406 432 1.435

3 114 461 851 1.426

The visualization of the results in IVE is shown in Figure 5.3 with the resource usage profile at
the top and the task Gantt chart in the lower half.

Figure 5.3: CP dashboard in IVE displaying the solution
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5.4.4 Alternative formulation without scheduling objects

Instead of defining task and resource objects it is also possible to formulate this problem with
a ‘cumulative’ constraint over standard finite domain variables that represent the different
attributes of tasks without being grouped into a predefined object. A single ‘cumulative’
constraint expresses the problem of scheduling a set of tasks on one discrete resource by es-
tablishing the following relations between its arguments (five arrays of decision variables for
the properties related to tasks—start, duration, end, resource use and size— all indexed by the
same set R and a constant or time-indexed resource capacity):

∀j ∈ R : startj + durationj = endj

∀j ∈ R : usej · durationj = sizej

∀t ∈ TIMES :
∑

j∈R|t∈[UB(startj)..LB(endj)]

usej ≤ CAPt

where UB stands for ‘upper bound’ and LB for ‘lower bound’ of a decision variable.

Let savef denote the disk used for saving a file f and usef the space used by the file (f ∈ FILES).
As with scheduling objects, the ‘start’ property of a task corresponds to the disk chosen for sav-
ing the file, and the resource requirement of a task is the file size. Since we want to save every
file onto a single disk, the ‘duration’ durf is fixed to 1. The remaining task properties ‘end’ and
‘size’ (ef and sf ) that need to be provided in the formulation of ‘cumulative’ constraints are
not really required for our problem; their values are determined by the other three properties.

5.4.5 Implementation

The following Mosel model implements the second model version using the cumulative con-
straint.

model "D-4 Bin packing (CP)"
uses "kalis", "mmsystem"

setparam("default_lb", 0)

declarations
ND: integer ! Number of floppy disks
FILES = 1..16 ! Set of files
DISKS: range ! Set of disks

CAP: integer ! Floppy disk size
SIZE: array(FILES) of integer ! Size of files to be saved

save: array(FILES) of cpvar ! Disk a file is saved on
use: array(FILES) of cpvar ! Space used by file on disk
dur,e,s: array(FILES) of cpvar ! Auxiliary arrays for ’cumulative’
diskuse: cpvar ! Number of disks used

Strategy: array(FILES) of cpbranching ! Enumeration
FSORT: array(FILES) of integer
end-declarations

initializations from ’Data/d4backup.dat’
CAP SIZE
end-initializations

! Provide a sufficiently large number of disks
ND:= ceil((sum(f in FILES) SIZE(f))/CAP)
DISKS:= 1..ND
finalize(DISKS)

! Limit the number of disks used
diskuse = maximum(save)

forall(f in FILES) do
setdomain(save(f), DISKS) ! Every file onto a single disk
use(f) = SIZE(f)

Scheduling 74 Xpress-Kalis user guide



dur(f) = 1
end-do

! Capacity limit of disks
cumulative(save, dur, e, use, s, CAP)

! Definition of search (place largest files first)
qsort(SYS_DOWN, SIZE, FSORT) ! Sort files in decreasing order of size
forall(f in FILES)
Strategy(f):= assign_var(KALIS_SMALLEST_MIN, KALIS_MIN_TO_MAX, {save(FSORT(f))})
cp_set_branching(Strategy)

! Minimize the total number of disks used
if not cp_minimize(diskuse) then
writeln("Problem infeasible")
end-if

! Solution printing
writeln("Number of disks used: ", getsol(diskuse))
forall(d in 1..getsol(diskuse)) do
write(d, ":")
forall(f in FILES) write( if(getsol(save(f))=d , " "+SIZE(f), ""))
writeln(" space used: ", sum(f in FILES | getsol(save(f))=d) SIZE(f))
end-do

end-model

The solution produced by the execution of this model has the same objective function value,
but the distribution of the files to the disks is not exactly the same: this problem has several
different optimal solutions, in particular those that may be obtained be interchanging the
order numbers of the disks. To shorten the search in such a case it may be useful to add some
symmetry breaking constraints that reduce the size of the search space by removing a part of
the feasible solutions. In the present example we may, for instance, assign the biggest file to
the first disk and the second largest to one of the first two disks, and so on, until we reach
a lower bound on the number of disks required (a save lower bound estimate is given by
rounding up to the next larger integer the sum of files sizes divided by the disk capacity).

5.5 Renewable and non-renewable resources

Besides the distinction ‘disjunctive–cumulative’ or ‘unary–discrete’ that we have encountered
in the previous sections there are other ways of describing or classifying resources. Another
important property is the concept of renewable versus non-renewable resources. The previous
examples have shown instances of renewable resources (machine capacity, manpower etc.):
the amount of resource used by a task is released at its completion and becomes available
for other tasks. In the case of non-renewable resources (e.g. money, raw material, interme-
diate products), the tasks using the resource consume it, that is, the available quantity of the
resource is diminuished by the amount used up by processing a task.

Instead of using resources tasks may also produce certain quantities of resource. Again, we may
have tasks that provide an amount of resource during their execution (renewable resources) or
tasks that add the result of their production to a stock of resource (non-renewable resources).

Let us now see how to formulate the following problem: we wish to schedule five jobs P1 to P5
representing two stages of a production process. P1 and P2 produce an intermediate product
that is needed by the jobs of the final stage (P3 to P5). For every job we are given its minimum
and maximum duration, its cost or, for the jobs of the final stage, its profit contribution. There
may be two cases, namely model A: the jobs of the first stage produce a given quantity of inter-
mediate product (such as electricity, heat, steam) at every point of time during their execution,
this intermediate product is consumed immediately by the jobs of the final stage. Model B:
the intermediate product results as ouput from the jobs of the first stage and is required as
input to start the jobs of the final stage. The intermediate product in model A is a renewable
resource and in model B we have the case of a non-renewable resource.
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5.5.1 Model formulation

Let FIRST = {P1, P2} be the set of jobs in the first stage, FINAL = {P3, P4, P5} the jobs of the
second stage, and the set JOBS the union of all jobs. For every job j we are given its minimum
and maximum duration MINDj and MAXDj respectively. RESAMTj is the amount of resource
needed as input or resulting as output from a job. Furthermore we have a cost COSTj for jobs
j of the first stage and a profit PROFITj for jobs j of the final stage.

Model A (renewable resource)

The case of a renewable resource is formulated by the following model. Notice that the re-
source capacity is set to 0 indicating that the only available quantities of resource are those
produced by the jobs of the first production stage.

resource res

tasks taskj(j ∈ JOBS)

maximize
∑

j∈JOBS

(PROFITj − COSTj)× taskj. duration

res. capacity = 0

∀j ∈ JOBS : taskj. start, taskj. end ∈ {0, . . . , HORIZON}
∀j ∈ JOBS : taskj. duration ∈ {MINDj, . . . , MAXDj}
∀j ∈ FIRST : taskj. provisionres = RESAMTj

∀j ∈ FINAL : taskj. requirementres = RESAMTj

Model B (non-renewable resource)

In analogy to the model A we formulate the second case as follows.

resource res

tasks taskj(j ∈ JOBS)

maximize
∑

j∈JOBS

(PROFITj − COSTj)× taskj. duration

res. capacity = 0

∀j ∈ JOBS : taskj. start, taskj. end ∈ {0, . . . , HORIZON}
∀j ∈ JOBS : taskj. duration ∈ {MINDj, . . . , MAXDj}
∀j ∈ FIRST : taskj. productionres = RESAMTj

∀j ∈ FINAL : taskj. consumptionres = RESAMTj

However, this model does not entirely correspond to the problem description above since the
production of the intermediate product occurs at the start of a task. To remedy this problem
we may introduce an auxiliary task Endj for every job j in the first stage. The auxiliary job
has duration 0, the same completion time as the original job and produces the intermediate
product in the place of the original job.

∀j ∈ FIRST : taskEndj
. end = taskj. end

∀j ∈ FIRST : taskEndj
. duration = 0

∀j ∈ FIRST : taskj. productionres = 0

∀j ∈ FIRST : taskEndj
. productionres = RESAMTj

5.5.2 Implementation

The following Mosel model implements case A. We use the default scheduling solver (function
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cp_schedule) indicating by the value true for the optional second argument that we wish
to maximize the objective function.

model "Renewable resource"
uses "kalis", "mmsystem"

forward procedure solution_found

declarations
FIRST = {’P1’,’P2’}
FINAL = {’P3’,’P4’,’P5’}
JOBS = FIRST+FINAL

MIND,MAXD: array(JOBS) of integer ! Limits on job durations
RESAMT: array(JOBS) of integer ! Resource use/production
HORIZON: integer ! Time horizon
PROFIT: array(FINAL) of real ! Profit from production
COST: array(JOBS) of real ! Cost of production
CAP: integer ! Available resource quantity

totalProfit: cpfloatvar
task: array(JOBS) of cptask ! Task objects for jobs
intermProd: cpresource ! Non-renewable resource (intermediate prod.)
end-declarations

initializations from ’Data/renewa.dat’
[MIND,MAXD] as ’DUR’ RESAMT HORIZON PROFIT COST CAP
end-initializations

! Setting up resources
set_resource_attributes(intermProd, KALIS_DISCRETE_RESOURCE, CAP)
setname(intermProd, "IntP")

! Setting up the tasks
forall(j in JOBS) do
setname(task(j), j)
setduration(task(j), MIND(j), MAXD(j))
setdomain(getend(task(j)), 0, HORIZON)
end-do

! Providing tasks
forall(j in FIRST) provides(task(j), RESAMT(j), intermProd)

! Requiring tasks
forall(j in FINAL) requires(task(j), RESAMT(j), intermProd)

! Objective function: total profit
totalProfit = sum(j in FINAL) PROFIT(j)*getduration(task(j)) -

sum(j in JOBS) COST(j)*getduration(task(j))
cp_set_solution_callback("solution_found")
setparam("MAX_COMPUTATION_TIME", 30)

! Solve the problem
starttime:= gettime
if cp_schedule(totalProfit,true)=0 then
exit(1)
end-if

! Solution printing
writeln("Total profit: ", getsol(totalProfit))
writeln("Job\tStart\tEnd\tDuration")
forall(j in JOBS)
writeln(j, "\t ", getsol(getstart(task(j))), "\t ", getsol(getend(task(j))),

"\t ", getsol(getduration(task(j))))

procedure solution_found
writeln(gettime-starttime , " sec. Solution found with total profit = ",

getsol(totalProfit))
forall(j in JOBS)
write(j, ": ", getsol(getstart(task(j))), "-", getsol(getend(task(j))),

"(", getsol(getduration(task(j))), "), ")
writeln
end-procedure

Scheduling 77 Xpress-Kalis user guide



end-model

The model for case B adds the two auxiliary tasks (forming the set ENDFIRST) that mark the
completion of the jobs in the first stage. The only other difference are the task properties
produces and consumes that define the resource constraints. We only repeat the relevant
part of the model:

declarations
FIRST = {’P1’,’P2’}
ENDFIRST = {’EndP1’, ’EndP2’}
FINAL = {’P3’,’P4’,’P5’}
JOBS = FIRST+ENDFIRST+FINAL

MIND,MAXD: array(JOBS) of integer ! Limits on job durations
RESAMT: array(JOBS) of integer ! Resource use/production
HORIZON: integer ! Time horizon
PROFIT: array(FINAL) of real ! Profit from production
COST: array(JOBS) of real ! Cost of production
CAP: integer ! Available resource quantity

totalProfit: cpfloatvar
task: array(JOBS) of cptask ! Task objects for jobs
intermProd: cpresource ! Non-renewable resource (intermediate prod.)
end-declarations

initializations from ’Data/renewb.dat’
[MIND,MAXD] as ’DUR’ RESAMT HORIZON PROFIT COST CAP
end-initializations

! Setting up resources
set_resource_attributes(intermProd, KALIS_DISCRETE_RESOURCE, CAP)
setname(intermProd, "IntP")

! Setting up the tasks
forall(j in JOBS) do
setname(task(j), j)
setduration(task(j), MIND(j), MAXD(j))
setdomain(getend(task(j)), 0, HORIZON)
end-do

! Production tasks
forall(j in ENDFIRST) produces(task(j), RESAMT(j), intermProd)
forall(j in FIRST) getend(task(j)) = getend(task("End"+j))

! Consumer tasks
forall(j in FINAL) consumes(task(j), RESAMT(j), intermProd)

5.5.3 Results

The behavior of the (default) search and the results of the two models are considerably dif-
ferent. The optimal solution with an objective of 344.9 for case B represented in Figure 5.5 is
proven within a fraction of a second. Finding a good solution for case A takes several seconds
on a standard PC; finding the optimal solution (see Figure 5.4) and proving its optimality re-
quires several minutes of running time. The main reason for this poor behavior of the search
is our choice of the objective function: the cost-based objective function does not propagate
well and therefore does not help with pruning the search tree. A better choice for objective
functions in scheduling problems generally are criteria involving the task decision variables
(start, duration, or completion time, particularly the latter).
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Figure 5.4: Solution for case A (resource provision and requirement)

Figure 5.5: Solution for case B (resource production and consumption)

5.5.4 Alternative formulation without scheduling objects

Instead of defining task and resource objects we may equally formulate this problem with a
‘producer-consumer’ constraint over standard finite domain variables that represent the dif-
ferent attributes of tasks without being grouped into a predefined object. A single ‘producer-
consumer’ constraint expresses the problem of scheduling a set of tasks producing or consum-
ing a non-renewable resource by establishing the following relations between its arguments
(seven arrays of decision variables for the properties related to tasks—start, duration, end, per
unit and cumulated resource production, per unit and cumulated resource consumption— all
indexed by the same set R):

∀j ∈ R : startj + durationj = endj

∀j ∈ R : producej · durationj = psizej

∀j ∈ R : consumej · durationj = csizej

∀t ∈ TIMES :
∑

j∈R|t∈[UB(startj)..LB(endj)]

(producej − consumej) ≥ 0

where UB stands for ‘upper bound’ and LB for ‘lower bound’ of a decision variable.

5.5.5 Implementation

The following Mosel model implements the second model version using the producer_-
consumer constraint.

model "Non-renewable resource"
uses "kalis"

setparam("DEFAULT_LB", 0)
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declarations
FIRST = {’P1’,’P2’}
ENDFIRST = {’EndP1’, ’EndP2’}
FINAL = {’P3’,’P4’,’P5’}
JOBS = FIRST+ENDFIRST+FINAL
PCJOBS = ENDFIRST+FINAL

MIND,MAXD: array(JOBS) of integer ! Limits on job durations
RESAMT: array(JOBS) of integer ! Resource use/production
HORIZON: integer ! Time horizon
PROFIT: array(FINAL) of real ! Profit from production
COST: array(JOBS) of real ! Cost of production
CAP: integer ! Available resource quantity

totalProfit: cpfloatvar
fstart,fdur,fcomp: array(FIRST) of cpvar! Start, duration & completion of jobs
start,dur,comp: array(PCJOBS) of cpvar ! Start, duration & completion of jobs
produce,consume: array(PCJOBS) of cpvar ! Production/consumption per time unit
psize,csize: array(PCJOBS) of cpvar ! Cumulated production/consumption
end-declarations

initializations from ’Data/renewb.dat’
[MIND,MAXD] as ’DUR’ RESAMT HORIZON PROFIT COST CAP
end-initializations

! Setting up the tasks
forall(j in PCJOBS) do
setname(start(j), j)
setdomain(dur(j), MIND(j), MAXD(j))
setdomain(comp(j), 0, HORIZON)
start(j) + dur(j) = comp(j)
end-do
forall(j in FIRST) do
setname(fstart(j), j)
setdomain(fdur(j), MIND(j), MAXD(j))
setdomain(fcomp(j), 0, HORIZON)
fstart(j) + fdur(j) = fcomp(j)
end-do

! Production tasks
forall(j in ENDFIRST) do
produce(j) = RESAMT(j)
consume(j) = 0
end-do
forall(j in FIRST) fcomp(j) = comp("End"+j)

! Consumer tasks
forall(j in FINAL) do
consume(j) = RESAMT(j)
produce(j) = 0
end-do

! Resource constraint
producer_consumer(start, comp, dur, produce, psize, consume, csize)

! Objective function: total profit
totalProfit = sum(j in FINAL) PROFIT(j)*dur(j) -

sum(j in FIRST) COST(j)*fdur(j)

if not cp_maximize(totalProfit) then
exit(1)
end-if

writeln("Total profit: ", getsol(totalProfit))
writeln("Job\tStart\tEnd\tDuration")
forall(j in FIRST)
writeln(j, "\t ", getsol(fstart(j)), "\t ", getsol(fcomp(j)),

"\t ", getsol(fdur(j)))
forall(j in PCJOBS)
writeln(j, "\t ", getsol(start(j)), "\t ", getsol(comp(j)),

"\t ", getsol(dur(j)))

end-model
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This model generates the same solution as the previous model version with a slightly longer
running time (though still just a fraction of a second on a standard PC).

5.6 Extensions: setup times

Consider once more the problem of planning the production of paint batches introduced in
Section 3.8. Between the processing of two batches the machine needs to be cleaned. The
cleaning (or setup) times incurred are sequence-dependent and asymetric. The objective is to
determine a production cycle of the shortest length.

5.6.1 Model formulation

For every job j (j ∈ JOBS = {1, . . . , NJ}), represented by a task object taskj, we are given its
processing duration DURj. We also have a matrix of cleaning times CLEAN with entries CLEANjk
indicating the duration of the cleaning operation if task k succedes task j. The machine pro-
cessing the jobs is modeled as a resource res of unitary capacity, thus stating the disjunctions
between the jobs.

With the objective to minimize the makespan (completion time of the last batch) we obtain
the following model:

resource res

tasks taskj(j ∈ JOBS)

minimize finish

finish = maximumj∈JOBS(taskj. end)

res. capacity = 1

∀j ∈ JOBS : taskj. duration = DURj

∀j ∈ JOBS : taskj. requirementres = 1

∀j, k ∈ JOBS : setup(taskj, taskk) = CLEANjk

The tricky bit in the formulation of the original problem is that we wish to minimize the cycle
time, that is, the completion of the last job plus the setup required between the last and the
first jobs in the sequence. Since our task-based model does not contain any information about
the sequence or rank of the jobs we introduce auxiliary variables firstjob and lastjob for the
index values of the jobs in the first and last positions of the production cycle, and a variable
cleanlf for the duration of the setup operation between the last and first tasks. The following
constraints express the relations between these variables and the task objects:

firstjob, lastjob ∈ JOBS

firstjob 6= lastjob

∀j ∈ JOBS : taskj. end = finish ⇔ lastjob = j

∀j ∈ JOBS : taskj. start = 1 ⇔ firstjob = j

cleanlf = CLEANlastjob,firstjob

Minimizing the cycle time then corresponds to minimizing the sum finish + cleanlf .

5.6.2 Implementation

The following Mosel model implements the task-based model formulated above. The setup
times between tasks are set with the procedure setsetuptimes indicating the two task ob-
jects and the corresponding duration value.

model "B-5 Paint production (CP)"
uses "kalis"
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declarations
NJ = 5 ! Number of paint batches (=jobs)
JOBS=1..NJ

DUR: array(JOBS) of integer ! Durations of jobs
CLEAN: array(JOBS,JOBS) of integer ! Cleaning times between jobs

task: array(JOBS) of cptask
res: cpresource

firstjob,lastjob,cleanlf,finish: cpvar
L: cpvarlist
cycleTime: cpvar ! Objective variable
Strategy: array(range) of cpbranching
end-declarations

initializations from ’Data/b5paint.dat’
DUR CLEAN
end-initializations

! Setting up the resource (formulation of the disjunction of tasks)
set_resource_attributes(res, KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks
forall(j in JOBS) getstart(task(j)) >= 1 ! Start times
forall(j in JOBS) set_task_attributes(task(j), DUR(j), res) ! Dur.s + disj.
forall(j,k in JOBS) setsetuptime(task(j), task(k), CLEAN(j,k), CLEAN(k,j))

! Cleaning times between batches

! Cleaning time at end of cycle (between last and first jobs)
setdomain(firstjob, JOBS); setdomain(lastjob, JOBS)
firstjob <> lastjob
forall(j in JOBS) equiv(getend(task(j))=getmakespan, lastjob=j)
forall(j in JOBS) equiv(getstart(task(j))=1, firstjob=j)
cleanlf = element(CLEAN, lastjob, firstjob)

forall(j in JOBS) L += getend(task(j))
finish = maximum(L)

! Objective: minimize the duration of a production cycle
cycleTime = finish - 1 + cleanlf

! Solve the problem
if cp_schedule(cycleTime) = 0 then
writeln("Problem is infeasible")
exit(1)
end-if
cp_show_stats

! Solution printing
declarations
SUCC: array(JOBS) of integer
end-declarations

forall(j in JOBS)
forall(k in JOBS)
if getsol(getstart(task(k))) = getsol(getend(task(j)))+CLEAN(j,k) then
SUCC(j):= k
break
end-if

writeln("Minimum cycle time: ", getsol(cycleTime))
writeln("Sequence of batches:\nBatch Start Duration Cleaning")
forall(k in JOBS)
writeln(" ", k, strfmt(getsol(getstart(task(k))),7), strfmt(DUR((k)),8),

strfmt(if(SUCC(k)>0, CLEAN(k,SUCC(k)), getsol(cleanlf)),9))

end-model

5.6.3 Results

The results are similar to those reported in Section 3.8. It should be noted here that this model
formulation is less efficient, in terms of search nodes and running times, than the previous
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model versions, and in particular the ’cycle’ constraint version presented in Section 3.10. How-
ever, the task-based formulation is more generic and easier to extend with additional features
than the problem-specific formulations in the previous model versions.

The graphical representation with IVE looks as follows (Figure 5.6).

Figure 5.6: Solution graph in IVE

5.7 Enumeration

In the previous scheduling examples we have used the default enumeration for scheduling
problems, invoked by the optimization function cp_schedule. The built-in search strate-
gies used by the solver in this case are particularly suited if we wish to minimize the com-
pletion time of a schedule. With other objectives the built-in strategies may not be a good
choice, especially if the model contains decision variables that are not part of scheduling ob-
jects (the built-in strategies always enumerate first the scheduling objects) or if we wish to
maximize an objective. Xpress-Kalis makes it therefore possible to use the standard optimiza-
tion functions cp_minimize and cp_maximize in models that contain scheduling objects, the
default search strategies employed by these optimization functions being different from the
scheduling-specific ones. In addition, the user may also define his own problem-specific enu-
meration as shown in the following examples.

User-defined enumeration strategies for scheduling problems may take two different forms:
variable-based and task-based. The former case is the subject of Chapter 4, and we only give a
small example here (Section 5.7.1). The latter will be explained with some more detail by the
means of a job-shop scheduling example.

5.7.1 Variable-based enumeration

When studying the problem solving statistics for the bin packing problem in Section 5.4 we find
that the enumeration using the default scheduling search strategies requires several hundred
nodes to prove optimality. With a problem-specific search strategy we may be able to do
better! Indeed, we shall see that a greedy-type strategy, assigning the largest files first, to the
first disk with sufficient space is clearly more efficient.

5.7.1.1 Using cp_minimize

The only decisions to make in this problem are the assignments of files to disks, that is, choosing
a value for the start time variables of the tasks. The following lines of Mosel code order
the tasks in decreasing order of file sizes and define an enumeration strategy for their start
times assigning each the smallest possible disk number first. Notice that the sorting subroutine
qsort is defined by the module mmsystem that needs to be loaded with a uses statement at
the beginning of the model.

declarations
Strategy: array(range) of cpbranching
FSORT: array(FILES) of integer
end-declarations

qsort(SYS_DOWN, SIZE, FSORT) ! Sort files in decreasing order of size
forall(f in FILES)
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Strategy(f):=assign_var(KALIS_SMALLEST_MIN, KALIS_MIN_TO_MAX,
{getstart(file(FSORT(f)))})

cp_set_branching(Strategy)

if not cp_minimize(diskuse) then writeln("Problem infeasible"); end-if

The choice of the variable selection criterion (first argument of assign_var) is not really im-
portant here since every strategy Strategyf only applies to a single variable and hence no se-
lection takes place. Equivalently, we may have written

declarations
Strategy: cpbranching
FSORT: array(FILES) of integer
LS: cpvarlist
end-declarations

qsort(SYS_DOWN, SIZE, FSORT) ! Sort files in decreasing order of size
forall(f in FILES)
LS+=getstart(file(FSORT(f)))
Strategy:=assign_var(KALIS_INPUT_ORDER, KALIS_MIN_TO_MAX, LS)
cp_set_branching(Strategy)

if not cp_minimize(diskuse) then writeln("Problem infeasible"); end-if

With this search strategy the first solution found uses 3 disks, that is, we immediately find an
optimal solution. The whole search terminates after 17 nodes and takes only a fraction of the
time needed by the default scheduling or minimization strategies.

5.7.1.2 Using cp_schedule

The scheduling search consists of a pretreatment (shaving) phase and two main phases (KALIS_-
INITIAL_SOLUTION and KALIS_OPTIMAL_SOLUTION) for which the user may specify enumer-
ation strategies by calling cp_set_schedule_search with the corresponding phase selection.
The ‘initial solution’ phase aims at providing quickly a good solution whereas the ‘optimal so-
lution’ phase proves optimality. Any search limits such as maximum number of nodes apply
separately to each phase, an overall time limit (parameter MAX_COMPUTATION_TIME) only ap-
plies to the last phase.

The definition of variable-based branching schemes for the scheduling search is done in exactly
the same way as what we have seen previously for standard search with cp_minimize or cp_-
maximize, replacing cp_set_strategy by cp_set_schedule_strategy:

cp_set_schedule_branching(KALIS_INITIAL_SOLUTION, Strategy)
if cp_schedule(diskuse)=0 then writeln("Problem infeasible"); end-if

With this search strategy, the optimal solution is found in the ’initial solution’ phase after just
8 nodes and the enumeration stops there since the pretreatment phase has proven a lower
bound of 3 which is just the value of the optimal solution.

NB: to obtain an output log from the different phases of the scheduling search set the control
parameter VERBOSE_LEVEL to 2, that is, add the following line to your model before the start
of the solution algorithm.

setparam("VERBOSE_LEVEL", 2)

5.7.2 Task-based enumeration

A task-based enumeration strategy consists in the definition of a selection strategy choosing
the task to be enumerated, a value selection heuristic for the task durations, and a value
selection heuristic for the task start times.

Consider the typical definition of a job-shop scheduling problem: we are given a set of jobs
that each need to be processed in a fixed order by a given set of machines. A machine executes
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one job at a time. The durations of the production tasks (= processing of a job on a machine)
and the sequence of machines per job for a 6 × 6 instance are shown in Table 5.3. The objective
is to minimize the makespan (latest completion time) of the schedule.

Table 5.3: 6 × 6 job-shop instance from [FM63]

Job Machines Durations

1 3 1 2 4 6 5 1 3 6 7 3 6

2 2 3 5 6 1 4 8 5 10 10 10 4

3 3 4 6 1 2 5 5 4 8 9 1 7

4 2 1 3 4 5 6 5 5 5 3 8 9

5 3 2 5 6 1 4 9 3 5 4 3 1

6 2 4 6 1 5 3 3 3 9 10 4 1

5.7.2.1 Model formulation

Let JOBS denote the set of jobs and MACH (MACH = {1, . . . , NM}) the set of machines. Every
job j is produced as a sequence of tasks taskjm where taskjm needs to be finished before taskj,m+1
can start. A task taskjm is processed by the machine RESjm and has a fixed duration DURjm.

The following model formulates the job-shop scheduling problem.

resources resm(m ∈ MACH = {1, . . . , NM})
tasks taskjm(j ∈ JOBS, m ∈ MACH)

minimize finish

finish = maximumj∈JOBS(taskj,NM. end)

∀m ∈ MACH : resm. capacity = 1

∀j ∈ JOBS, m ∈ MACH : taskjm. start, taskjm. end ∈ {0, . . . , MAXTIME}
∀j ∈ JOBS, m ∈ {1, . . . , NM− 1} : taskjm. successors = {taskj,m+1}
∀j ∈ JOBS, m ∈ MACH : taskjm. duration = DURjm

∀j ∈ JOBS, m ∈ MACH : taskjm. requirementRESjm = 1

5.7.2.2 Implementation

The following Mosel model implements the job-shop scheduling problem and defines a task-
based branching strategy for solving it. We select the task that has the smallest remaining do-
main for its start variable and enumerate the possible values for this variable starting with the
smallest. A task-based branching strategy is defined in Xpress-Kalis with the function task_-
serialize, that takes as arguments the user task selection, value selection strategies for the
duration and start variables, and the set of tasks it applies to. Such task-based branching
strategies can be combined freely with any variable-based branching strategies.

- User branching strategy -

(c) 2008 Artelys S.A. and Fair Isaac Corporation

*****************************************************************!)

model "Job shop (CP)"
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uses "kalis", "mmsystem"

parameters

DATAFILE = "jobshop.dat"

NJ = 6 ! Number of jobs

NM = 6 ! Number of resources

end-parameters

forward function select_task(tlist: cptasklist): integer

declarations

JOBS = 1..NJ ! Set of jobs

MACH = 1..NM ! Set of resources

RES: array(JOBS,MACH) of integer ! Resource use of tasks

DUR: array(JOBS,MACH) of integer ! Durations of tasks

res: array(MACH) of cpresource ! Resources

task: array(JOBS,MACH) of cptask ! Tasks

end-declarations

initializations from "Data/"+DATAFILE

RES DUR

end-initializations

HORIZON:= sum(j in JOBS, m in MACH) DUR(j,m)

forall(j in JOBS) getend(task(j,NM)) <= HORIZON

! Setting up the resources (capacity 1)

forall(m in MACH)

set_resource_attributes(res(m), KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks (durations, resource used)

forall(j in JOBS, m in MACH)

set_task_attributes(task(j,m), DUR(j,m), res(RES(j,m)))

! Precedence constraints between the tasks of every job

forall (j in JOBS, m in 1..NM-1)
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! getstart(task(j,m)) + DUR(j,m) <= getstart(task(j,m+1))

setsuccessors(task(j,m), {task(j,m+1)})

! Branching strategy

Strategy:=task_serialize("select_task", KALIS_MIN_TO_MAX,

KALIS_MIN_TO_MAX,

union(j in JOBS, m in MACH | exists(task(j,m))) {task(j,m)})

cp_set_branching(Strategy)

! Solve the problem

starttime:= gettime

if not cp_minimize(getmakespan) then

writeln("Problem is infeasible")

exit(1)

end-if

! Solution printing

cp_show_stats

write(gettime-starttime, "sec ")

writeln("Total completion time: ", getsol(getmakespan))

forall(j in JOBS) do

write("Job ", strfmt(j,-2))

forall(m in MACH | exists(task(j,m)))

write(strfmt(RES(j,m),3), ":", strfmt(getsol(getstart(task(j,m))),3),

"-", strfmt(getsol(getend(task(j,m))),2))

writeln

end-do

!*******************************************************************

! Task selection for branching

function select_task(tlist: cptasklist): integer

declarations

Tset: set of integer

end-declarations

! Get the number of elements of "tlist"
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listsize:= getsize(tlist)

! Set of uninstantiated tasks

forall(i in 1..listsize)

if not is_fixed(getstart(gettask(tlist,i))) then

Tset+= {i}

end-if

returned:= 0

! Get a task with smallest start time domain

smin:= min(j in Tset) getsize(getstart(gettask(tlist,j)))

forall(j in Tset)

if getsize(getstart(gettask(tlist,j))) = smin then

returned:=j; break

end-if

end-function

end-model

5.7.2.3 Results

An optimal solution to this problem has a makespan of 55. In comparison with the default
scheduling strategy, our branching strategy reduces the number of nodes that are enumer-
ated from over 300 to just 105 nodes with a comparable model execution time (however, for
larger instances the default scheduling strategy is likely to outperform our branching strategy).
The default minimization strategy does not find any solution for this problem within several
minutes running time.

Scheduling 88 Xpress-Kalis user guide



Figure 5.7: Solution graph in IVE

5.7.2.4 Alternative search strategies

Similarly to what we have seen above, we may define a user task selection strategy for the
scheduling search. The only modifications required in our model are to replace cp_set_-
branching by cp_set_schedule_strategy and cp_minimize by cp_schedule. The defi-
nition of the user task choice function select_task remains unchanged.

! Branching strategy
Strategy:=task_serialize("select_task", KALIS_MIN_TO_MAX,

KALIS_MIN_TO_MAX,
union(j in JOBS, m in MACH | exists(task(j,m))) {task(j,m)})

cp_set_schedule_strategy(KALIS_INITIAL_SOLUTION, Strategy)

! Solve the problem
if cp_schedule(getmakespan)=0 then
writeln("Problem is infeasible")
exit(1)
end-if

This strategy takes even fewer nodes for completing the enumeration than the standard search
with user task selection.

Instead of the user-defined task selection function select_task it is equally possible to use
one of the predefined task selection criteria:

KALIS_SMALLEST_EST / KALIS_LARGEST_EST choose task with the smallest/largest lower
bound on its start time (’earliest start time’),
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KALIS_SMALLEST_LST / KALIS_LARGEST_LST choose task with the smallest/largest upper
bound on its start time (’latest start time’),

KALIS_SMALLEST_ECT / KALIS_LARGEST_ECT choose task with the smallest/largest lower
bound on its completion time (’earliest completion time’),

KALIS_SMALLEST_LCT / KALIS_LARGEST_LCT choose task with the smallest/largest upper
bound on its completion time (’latest completion time’).

For the present example, the best choice proves to be KALIS_SMALLEST_LCT (terminating the
search after approximately 60 nodes with both cp_schedule and cp_minimize):

Strategy:=task_serialize(KALIS_SMALLEST_LCT, KALIS_MIN_TO_MAX,
KALIS_MIN_TO_MAX,
union(j in JOBS, m in MACH | exists(task(j,m))) {task(j,m)})

5.7.3 Choice of the propagation algorithm

The performance of search algorithms for scheduling problems relies not alone on the def-
inition of the enumeration strategy; the choice of the propagation algorithm for resource
constraints may also have a noticeable impact. The propagation type is set by an optional last
argument of the procedure set_resources_attributes, such as

set_resource_attributes(res, KALIS_DISCRETE_RESOURCE, CAP, ALG)

where ALG is the propagation algorithm choice.

For unary resources we have a choice between the algorithms KALIS_TASK_INTERVALS and
KALIS_DISJUNCTIONS. The former achieves stronger pruning at the cost of a larger compu-
tational overhead making the choice of KALIS_DISJUNCTIONS more competitive for small to
medium sized problems. Taking the example of the jobshop problem from the previous sec-
tion, when using KALIS_DISJUNCTIONS the default scheduling search is about 4 times faster
than with KALIS_TASK_INTERVALS although the number of nodes explored is slightly larger
than with the latter.

The propagation algorithm options for cumulative resources are KALIS_TASK_INTERVALS and
KALIS_TIMETABLING. The filtering algorithm KALIS_TASK_INTERVALS is stronger and rela-
tively slow making it the preferred choice for hard, medium-sized problems whereas KALIS_-
TIMETABLING should be given preference for very large problems where the computational
overhead of the former may be prohibitive. In terms of an example, the binpacking problem
we have worked with in Sections 5.4 and 5.7.1 solves about three times faster with KALIS_-
TASK_INTERVALS than with KALIS_TIMETABLING (using the default scheduling search).
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Chapter 6

Implementing Kalis extensions

Xpress-Kalis makes accessible a subset of the functionality of the Artelys Kalis library within
Mosel. However, sometimes industrial applications give raise to specific constraints that are
not easily expressed with the constraint relations of Xpress-Kalis or for which more efficient
propagation algorithms are known. In such a case it may be worthwhile to implement a new
constraint relation for the specific problem at hand, using the functionality of Xpress-Kalis
extensions (i.e., writing an add-on C++ library). Besides a more straightforward model for-
mulation (and hence higher readability and easier maintenance of the model), implementing
a specific constraint propagation algorithm might have a considerable impact on the solving
times. The example of constraint definition given in this chapter being very simple, the reader
is invited to take a look at the more realistic examples in the examples database on the Xpress
website to confirm this statement.

The definition of user constraints often also calls for an enumeration tailored to the particular
problem (obviously, the implementation of user branching strategies in not conditioned by
the definition of new constraints). In the previous chapters we have seen examples of user
branching strategies implemented directly in the Mosel model via the definition of variable
and value selection subroutines. The same user strategies can be implemented in an Xpress-
Kalis extension, the latter being preferrable if the variable or value selection relies on (the
repeated execution of) some computationally expensive algorithm. Later in this chapter we
shall see an example of a user search strategy comparing the two implementation options.
As a major difference to the implementation within the Mosel language the implementation
by an Xpress-Kalis extension also makes it possible to define an entirely new branching scheme,
potentially even involving other objects than the variables, (disjunctive) constraints, or tasks
branched on in the existing schemes.

Note: this part is adressed at expert users, it deals with functionality on a lower level than
the previous chapters. It requires more profound understanding of Constraint Programming
techniques and of the functioning of a constraint solver, in particular the Artelys Kalis Library.
Furthermore the reader is expected to have some experience with programming in C++.

6.1 Software architecture

The following graphic represents the standard distribution of Mosel + Xpress-Kalis so far.
Xpress-Kalis was provided in the form of a Mosel module, kalis, that included the Artelys Kalis
Library. The kalis module interacts with the Mosel Native Interface (Mosel NI) to give access to
functionality of the Artelys Kalis library within the Mosel language.

Xpress−Kalis
Artelys Kalis library

(kalis.dso)
Mosel

Figure 6.1: Standard distribution of Mosel + Xpress-Kalis
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The software architecture for Xpress-Kalis extensions looks somewhat different. Most impor-
tantly, the Artelys Kalis Library is now provided separately making its functionality directly
accessible to the extension libraries. From the (Mosel) user point of view nothing changes, the
kalis module provides the Xpress-Kalis functionality in the Mosel language just in the same way
as this has been the case with previous releases.

Xpress−Kalis
Mosel

library
extension
Xpress−Kalis

(kalis.dso)
Artelys Kalis library

Figure 6.2: Xpress-Kalis extensions architecture

6.2 Required software and installation

Kalis extensions are implemented by writing a C++ program that (a) defines new classes derived
from some classes of the Kalis Library and (b) follows the conventions of the Mosel Native
Interface for the definition of subroutines. Besides the standard installation of Mosel with
Xpress-Kalis you therefore need the following:

1. the Mosel Native Interface

2. the Xpress-Kalis extensions package

3. a C/C++ compiler

The Mosel Native Interface (NI) is included in the standard Mosel distribution and should be
readily installed on your computer if you have followed the standard Xpress-MP installation
procedure. The functions of the Mosel NI are documented in the NI Reference Manual, and
the NI User Guide describes several examples of module definitions. Both documents are part
of the Mosel documentation in your Xpress-MP installation and they are equally available for
download from the Xpress website.

The Xpress-Kalis extensions package contains the header files for the Xpress-Kalis module and
the Artelys Kalis library that are necessary if you wish to compile extension libraries. It also
includes a set of extension examples a selection of which are documented in the remainder of
this chapter. NB: There is no need to install the extensions package for standard use of Xpress-
Kalis or if you simply wish to use readily compiled extension libraries.
The Artelys Kalis library itself is provided with the standard Xpress-Kalis distribution. The in-
stallation procedure sets up all the required environment variables. For examples of working
with this library, and in particular how to use the extension features of the Kalis library, the
reader is referred to the extract of the Artelys Kalis User Guide provided with the extensions
package.

Our examples use ANSII C/C++. The Artelys Kalis library requires under Windows the MSVC6.0
C++ compiler (or more recent versions) and under Linux gcc version 3.4.6.

6.3 Compilation

All user extensions need to include the header files of the three software components used by
them: the Kalis library, the Mosel NI, and the extensions interface of Xpress-Kalis.
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#include "Kalis.h"
#include "xprm_ni.h"
#include "XpressKalisExtensions.h"

Makefiles for the corresponding platform and operating system are provided with the exam-
ples of the Xpress-Kalis extensions package (see the examples subdirectory kalis/Extensions
of your Xpress-MP installation). Once the extension library myExtension.dll (or myExtension.so
for Linux/Unix) has been created it needs to be copied into the subdirectory dso of the Xpress-
MP installation or any directory pointed at by the environment variable MOSEL_DSO. Xpress-
Kalis will automatically load any extension libraries encountered in these locations.
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Chapter 7

Writing a user constraint

The constraint relation ’DIFFEZ’ described in this section has originally been developed for a
personnel planning application in a disabled care center (see []).

Three working locations are to be staffed from a pool of five persons (A, B, C, D, E), each
location taking 1 2 persons. A member of staff is either assigned to a working location or has
a day off. There are also some specific constraints for certain persons:

1. B is accompanied/supervised by D.

2. C only works at location 1.

3. E can only work at locations 1 or 2 if A is assigned to the same post.

4. A cannot work at the same location as B or C.

We wish to generate the full list of all possible work plans.

7.1 Model formulation

The working location assigned to a person p from the set of staff STAFF is represented by
the decision variable assignp. These decision variables take values in the set of working lo-
cations POSTS = {0, 1, . . . , NL} where 1, . . . , NL are the actual working locations and 0 stands
for ’day off’. Every location l has a given minimum and maximum staff level (MINSTAFFl and
MAXSTAFFl).

Relations (1) and (2) are expressed by the constraints

assignB ≥ 1 ⇒ assignB = assignD

assignC ≤ 1

and the constraint (3) can be formulated by the following two implications.

assignE = 1 ⇒ assignA = 1

assignE = 2 ⇒ assignA = 2

The relation ’A not at the same location as B or C’ requires some special care given that al-
though they must not work together A might well have time off simultaneously with B or C.

assignA 6= assignB or (assignA = 0 and assignB = 0)

assignA 6= assignC or (assignA = 0 and assignC = 0)

The staffing limits on the working locations:

∀l ∈ POSTS : MINSTAFFl ≤ |assignp = l|p∈STAFF ≤ MAXSTAFFl
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are best expressed by a ’distribute’ (global cardinality) relation as described in Section 3.7 that
establishes the lower and upper staffing limits for all working locations at once. We obtain the
following model:

∀p ∈ STAFF : assignp ∈ POSTS = {0, 1, . . . , NL}
assignB ≥ 1 ⇒ assignB = assignD

assignC ≤ 1

assignE = 1 ⇒ assignA = 1

assignE = 2 ⇒ assignA = 2

assignA 6= assignB or (assignA = 0 and assignB = 0)

assignA 6= assignC or (assignA = 0 and assignC = 0)

distribute(assignSTAFF , POSTS, MINSTAFFPOSTS,, MAXSTAFFPOSTS,)

7.2 Implementation: Mosel model

The following Mosel implementation of our model (file diffez.mos) indicates two different
formulations for the relations (4) ’A not at the same location as B or C’: a straightforward
implementation as composite constraint relations using the logical ’and’ and ’or’ connectors
or alternatively, by using a new constraint relation diffez. The implementation of this new
constraint as a user extension to Xpress-Kalis is described in the following section.

model "Personnel planning using DIFFEZ"
uses "kalis"

declarations
NL = 3
POSTS = 0..NL ! 1-NL: working locations, 0: time off
STAFF = {’A’,’B’,’C’,’D’,’E’} ! Personnel
MINSTAFF,MAXSTAFF: array(POSTS) of integer
assign: array(STAFF) of cpvar ! Working place assignments
end-declarations

MINSTAFF::(0..NL)[0,1,1,1]
MAXSTAFF::(0..NL)[2,2,2,2]

forall(p in STAFF) setdomain(assign(p), POSTS)

! B accompanied by D
implies(assign(’B’)>=1, assign(’B’) = assign(’D’))

! C only at location 1 (or time off)
assign(’C’) <= 1

! E at locations 1 or 2 only if A also assigned to it
implies(assign(’E’)=1, assign(’A’)=1)
implies(assign(’E’)=2, assign(’A’)=2)

! A not with B or C
diffez(assign(’A’),assign(’B’))
diffez(assign(’A’),assign(’C’))

(! Equivalent constraint formulation:
assign(’A’)<>assign(’B’) or (assign(’A’)=0 and assign(’B’)=0)
assign(’A’)<>assign(’C’) or (assign(’A’)=0 and assign(’C’)=0)

!)

! Lower and upper staffing limits for all working locations (incl. time off)
distribute(assign, POSTS, MINSTAFF, MAXSTAFF)

ct:=0
write(" Person: ")
forall(p in STAFF) write(" ", p)
while(cp_find_next_sol) do
ct+=1
write("\nSolution ", strfmt(ct,2), ": ")
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forall(p in STAFF) write(" ", assign(p).sol)
end-do
writeln
end-model

This model produces a list of 18 different work plans.

7.3 Implementation: user extension

A user extension for Xpress-Kalis is a (user-written) C++ library following certain conventions
as explained subsequently. An extension library adds to the functionality of the Artelys Kalis
solver by defining new (derived) classes for constraints or—as we shall see in the next section—
branching schemes. The Mosel module kalis loads any extensions identified as such and makes
their functionality visible within Mosel.

From a Mosel point of view, user extensions always come in the form of subroutines (entirely
new ones or overloaded versions to existing subroutines). As a quick test whether or which
extensions are present you may display the list of functions of the module kalis using Mosel’s
exam command, i.e., from the command line

mosel -c "exam -s kalis"

or within IVE select the menu Modules � List available modules to open the module display
window, there choose kalis and the Functions & Procedures tab. The resulting list of Xpress-
Kalis subroutines includes all subroutines from extension libraries identified by the kalis mod-
ule.

The implementation of an Xpress-Kalis extension library has four major components:

1. the declaration of the new subroutine(s) for the Mosel language,

2. the definition of the four Xpress-Kalis interface functions,

3. the implementation of the C function(s) associated with the entries in the list of Mosel
subroutines,

4. the implementation of the C++ class(es) and any related methods as required by the
extension mechanisms of the Artelys Kalis library.

For the implementation of the ’DIFFEZ’ relation we have a single entry in the Mosel subroutine
table (defining function diffez) and correspondingly, the definition of a single C function
associated with this entry. On the Kalis side, there is the definition of a new class derived from
the Kalis class KUserConstraint including a set of methods as required by the solver. We
shall now take a closer look at each of these components.

7.3.1 List of Mosel subroutines

The list of Mosel subroutines declares the prototypes of the new subroutines for the Mosel
language defined by the extension and establishes the correspondence with the C functions
implementing the Mosel subroutines. The list has a standardized format defined by the Mosel
Native Interface (NI); this format is documented in the ’Mosel NI Reference manual’ and the
’Mosel NI User Guide’ contains several examples of lists of subroutines.

For the ’DIFFEZ’ constraint we have the following list of subroutines with a single entry:

static const int numNewFct = 1; // No. of new functions in this extension

static XPRMdsofct extensions[numNewFct] =
{
{
"diffez", // name of the function within Mosel
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10001, // code (unique value within this extension)
XPRM_TYP_EXTN, // return type (here: CP constraint, an "external type")
2, // number of arguments
"cpctr:|cpvar||cpvar|", // signature (external type names in arguments

// are delimited by "|")
dez_diffezConstraint // function called for constraint creation

}
};

One entry of the list of subroutines consists of (in this order):

• The name of the subroutine that will be used within the Mosel language (NB: the sub-
routine name is case sensitive, if you wish to define, for instance, lower and upper case
versions, you need to specify two separate entries in the list of subroutines).

• A reference number: an integer value that should be unique within the extension; Xpress-
Kalis dynamically renumbers all subroutines from extensions each time the kalis module
is loaded to prevent clashes among extensions or between an extension and the Xpress-
Kalis subroutines.

• The return type (if the subroutine is a function): for Xpress-Kalis extensions this usually is
an external type (code XPRM_TYP_EXTN).

• The signature of the Mosel subroutine: the return type (if the subroutine is a function),
followed by a colon and the types of the arguments. The names of external types in
the arguments must be surrounded by ’¯’, for the encoding of Mosel’s own types and
structured data (arrays, sets, lists) please refer to the Mosel NI Reference manual.

• The C function implementing the Mosel subroutine (see Section 7.3.3 below).

Within IVE you may use the Module wizzard to generate a skeleton template for the list of
subroutines and the required implementation functions in the Mosel NI format. Attention:
the template file created by the wizzard will contain a module initialization function (and
some associated data structures), this function is not required in the present case and must be
deleted.

7.3.2 Xpress-Kalis interface functions

Every extension library must define the four predefined Xpress-Kalis interface functions. These
functions are called by Xpress-Kalis to exchange information with the extension library and
most importantly, they are used to identify a library found on the DSO search path (the current
directory, subdirectory dso of the Xpress-MP installation, and any locations defined by the
environment variable MOSEL_DSO) as an Xpress-Kalis extension.

#ifdef _WIN32
#define EXTDLLIMPORTEXPORT __declspec(dllexport)

#else
#define EXTDLLIMPORTEXPORT

#endif

// Return the list of extensions in this module
extern "C" EXTDLLIMPORTEXPORT XPRMdsofct *getXpressKalisModuleDefinition(void) {

return extensions;
}

// Return the number of extensions in this module
extern "C" EXTDLLIMPORTEXPORT int getNumberOfXpressKalisExtensions(void) {
return numNewFct;

}

XPRMnifct mm; // Access to Mosel NI functions

// Retrieve the Mosel NI function table
extern "C" EXTDLLIMPORTEXPORT void setNiFCT(XPRMnifct nifct, u_iorp *interver,

u_iorp *libver, XPRMdsointer **interf) {
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mm = nifct;
}

// Called upon module unloading
extern "C" EXTDLLIMPORTEXPORT void resetXpressKalisModule(void) {
memoryManager.freeTemp();

}

The first two functions (getXpressKalisModuleDefinition and getNumberOfXpressKalis-
Extensions) pass the list of Mosel subroutines and their number from the user extension to
Xpress-Kalis. The function setNiFCT retrieves the Mosel NI function table into the extension.
The last function (resetXpressKalisModule) is called when the Xpress-Kalis module (and
hence all extensions loaded by it) is unloaded. It is used in our example to free the memory
allocated by our extension. NB: Modules are unloaded at the termination of Mosel or by an
explicit module unloading command, and generally not after every single model run.

Note on memory management: every user extension needs to manage the memory it allo-
cates. In our extension examples we use the memory manager defined in the include file
MemoryMgmt.h that comes with the set of examples of the extensions package. This memory
manager is provided in terms of an example, it is not a part of Xpress-Kalis and users may
choose to implement other memory management procedures for their extensions. The decla-
ration of the memory manager used in our implementation looks as follows:

#include "MemoryMgmt.h"
static MemMan memoryManager;

7.3.3 Implementation of the Mosel function

The following code extract is the C implementation of the Mosel function diffez: it exchanges
information with Mosel through the Mosel NI and uses the Kalis library to create a new ’CP
constraint’ object.

int dez_diffezConstraint(XPRMcontext ctx,void *libctx)
{
s_mkctx *mkctx;
Kobject *var1,*var2;

try {
mkctx=(s_mkctx *)libctx;

// Obtain the arguments from Mosel.
var1 = (Kobject *)XPRM_POP_REF(ctx);
var2 = (Kobject *)XPRM_POP_REF(ctx);

if((var1 == NULL) || (var2 == NULL))
{

printf("DiffEZ: Undefined cpvar in constraint creation.\n");
return XPRM_RT_ERROR;

}
else
{

// Build the new KObject representing the constraint
Kobject *dezctr = new Kobject;

// Set its class (as a constraint)
dezctr->cls = C_KConstraint;

// Set its value
dezctr->value.any = new DiffEZConstraint(*var1->value.pKIntVar,

*var2->value.pKIntVar, ctx);

// Add "dezctr" to the memory manager
memoryManager.newObject(CCO_KConstraint, dezctr->value.pKConstraint);
memoryManager.newObject(CCO_Kobject, dezctr);

// Return result to Mosel
XPRM_PUSH_REF(ctx,dezctr);

Writing a user constraint 99 Xpress-Kalis user guide



// Everything went alright: return ’Xpress-Mosel RunTime ok’.
return XPRM_RT_OK;

}
} catch(ArtelysException &e) {
printf("DiffEZ: Artelys Exception occured during constraint creation.\n");
mkctx->saved_ctx=NULL;
return XPRM_RT_ERROR;

} catch (...) {
printf("DiffEZ: Unknown exception occured during constraint creation.\n");
mkctx->saved_ctx=NULL;
return XPRM_RT_ERROR;

}

// Everything went alright: return ’Xpress-Mosel RunTime ok’.
return XPRM_RT_OK;

}

Syntax: The C function called by Mosel as the implementation of the subroutine diffez has
a fixed format, specified by the Mosel Native Interface (NI). The first argument is always the
Mosel execution context and the second is an (optional) pointer to the library context, that is,
for all Xpress-Kalis extensions, the execution context of the kalis module.

Subroutine arguments: The original arguments of the Mosel subroutine need to be retrieved
in the order of their definition from the Mosel stack, using the macros XPRM_POP_REF, XPRM_-
POP_INT, XPRM_POP_REAL, or XPRM_POP_STRING provided by the Mosel NI for this purpose.
Any objects other than Mosel’s basic types are passed by reference, meaning that we need to
use XPRM_POP_REF to access the stack for Xpress-Kalis types or any kind of structured data.
Please note that always all arguments must be taken from the stack even if they might not be
required in some specific cases.

Xpress-Kalis types: In the present example both arguments have the type cpvar in the Mosel
language. Within Kalis this type corresponds to the class KIntVar. However, all Xpress-Kalis
types are passed between Mosel and the extension as objects of the class Kobject and the
two CP decision variables therefore need to be retrieved as such and are later converted to
the desired type. The same applies to the new constraint created subsequently: the constraint
is declared as a Kobject, its actual class is specified in the attribute cls, and the constraint
definition is saved into the value of the object. The table 7.1 lists the Mosel types defined
by kalis, the corresponding class in the Artelys Kalis library, and the type of the Kobject in
Xpress-Kalis extensions.

Table 7.1: Correspondence between Mosel types and library classes

Mosel type Description Kalis class Kobject type

cpvar Discrete (finite-domain) variable KIntVar C_KIntVar

cpfloatvar Continuous variable KFloatVar C_KFloatVar

cpctr Constraint KConstraint C_KConstraint

cpbranching Branching scheme KBranchingScheme C_KbranchingScheme

cpvarlist List of discrete variables KIntVarArray C_KintVarArray

cpdisjlist Liste of disjunctions KDisjunctionArray C_KdisjunctionArray

cptask Task object KTask C_KTask

cptasklist List of tasks KTaskArray C_KTaskArray

cpresource Resource object KResource C_KResource

Return value and result of execution: The Mosel subroutine we wish to implement is a func-
tion, that means we need to pass its return value back to Mosel, via the Mosel stack. Since we
return an Xpress-Kalis object (a new constraint) we need to use the stack access macro XPRM_-
PUSH_REF.
Error handling on the C level is implemented via the result value of the C function (codes
XPRM_RT_OK or XPRM_RT_ERROR).

7.3.4 The Kalis user constraint class

A user-defined constraint for the Kalis library is derived from the abstract class KUserConstraint
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(most general case) or defined as a specialization of one of the existing constraint classes.—
Here we show the more general case, i.e., departing from KUserConstraint. Besides a con-
structor and a destructor, every constraint class needs to implement the methods

• awake (what to do on first activation of the constraint),

• propagate (the implementation of the constraint propagation algorithm properly speak-
ing), and

• askIfEntailed (employed within composite constraint relations).

It is also recommended to provide a print method. Optionally, specific propagation behavior
can be implemented by defining one or several of the awake event methods:

• awakeOnInf (modification to lower bound),

• awakeOnSup (modification to upper bound),

• awakeOnInst (instantiation),

• awakeOnRem (removal of a value),

• awakeOnVar (used with Boolean connectors).

If any of these methods are not defined, the propagate method will be called in their place.
For complicated constraint relations the specific propagation events may all be redefined to
call constAwake. This signals to the solver that the constraint propagation algorithm for the
particular constraint should be triggered only once all other propagations have been carried
out at a node, thus avoiding repeated, unnecessarily time-consuming constraint evaluations.

For the DIFFEZ constraint we have the following class definition (in file diffez.h):

class DiffEZConstraint: public KUserConstraint
{
protected:
XPRMcontext moselctx;

public:
DiffEZConstraint(KIntVar &x, KIntVar &y, XPRMcontext ctx);
virtual ~DiffEZConstraint() {};

virtual void awake(void);
virtual void awakeOnInst(KIntVar &var);
virtual void propagate(void);
virtual void print();
virtual void print(void*ctx, PrintFunctionPtr*pfp);
virtual int askIfEntailed(void);

};

Let us now take a look at the implementation in detail:

Constructor: every class needs to implement at least one constructor. The constraint class
constructor calls the super constructor ’KUserConstraint’ with the variables of the constraint
as the argument (one or two single variables as is the case in this example, or an array of
variables KIntVarArray). The constructor of our constraint defines the constraint name to be
used when printing the constraint and saves the Mosel context (not used in our example).

DiffEZConstraint::DiffEZConstraint(KIntVar &v1, KIntVar &v2,
XPRMcontext ctx): KUserConstraint(v1,v2) {
char buf[80];
snprintf(buf,80,"DiffEZ(%s,%s)", v1.getName(), v2.getName());
setName(buf); // Set the constraint name

moselctx = ctx; // Save Mosel context
}
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Constraint propagation: On activation of a DIFFEZ constraint (awake) we simply call its propa-
gation algorithm. The constraint propagation algorithm itself is implemented by the method
propagate: if one of the two variables in the constraint is instantiated to a value different
from 0, this value is removed from the domain of the second variable in the constraint. We
have also implemented a specific handling of the event ’a variable has been instantiated’ for
this constraint class (method awakeOnInst): if the instantiated variable has a value different
from 0 then this value is removed from the domain of the other variable in the constraint.
The entailment test (method askIfEntailed) checks the different cases that might occur:
only if both variables are instantiated we can decide whether the constraint is violated or not,
in all other cases the return value is the status CUNKNOWN, or ’undecidable’.

// **** Initial propagation of the constraint ****
void DiffEZConstraint::awake() {
propagate();

}

// **** Constraint propagation ****
void DiffEZConstraint::propagate() {
if(_vars[0].getIsInstantiated() && _vars[0].getValue()!=0 &&

_vars[1].canBeInstantiatedTo(_vars[0].getValue()))
_vars[1].remVal(_vars[0].getValue());

if(_vars[1].getIsInstantiated() && _vars[1].getValue()!=0 &&
_vars[0].canBeInstantiatedTo(_vars[1].getValue()))
_vars[0].remVal(_vars[1].getValue());

}

// **** Entailment test (used by composite constraints, e.g., ’implies’) ****
int DiffEZConstraint::askIfEntailed() {
if (_vars[0].getIsInstantiated() && _vars[1].getIsInstantiated() ) {
if ( (_vars[0].getValue()!=0) &&

(_vars[0].getValue() == _vars[1].getValue()) )
{ // the constraint is violated
return CFALSE;

}
else { // the constraint is satisfied
return CTRUE;

}
}
else if ( (_vars[0].getIsInstantiated() && _vars[0].getValue() == 0) ||

(_vars[1].getIsInstantiated() && _vars[1].getValue() == 0)) {
return CTRUE;

}
else {
// Don’t know yet if the constraint is definitly violated or verified
return CUNKNOWN;

}
}

// **** The variable ’var’ has been instantiated to var.getValue() ****
void DiffEZConstraint::awakeOnInst(KIntVar &var) {
if ( var.isEqualTo(_vars[0]) && var.getValue()!=0) {
_vars[1].remVal(var.getValue());

}
else if ( var.isEqualTo(_vars[1]) && var.getValue()!=0 ) {
_vars[0].remVal(var.getValue());

}
}

Printing: the following two (optional) printing functions are defined by our constraint class.
The second version is used, for instance, for displaying the constraint within IVE.

void DiffEZConstraint::print() {
printf("%s", getName());

}

void DiffEZConstraint::print(void*ctx, PrintFunctionPtr*pfp)
{
char buf[80];
snprintf(buf, 80, "%s", getName());
(*pfp)(ctx, buf);

}
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7.3.5 Improving the constraint propagation algorithm

Sometimes it may be helpful with the implementation of constraint propagation algorithms
to be able to save additional information that gets updated when the solver backtracks to
an earlier node. This functionality is provided by Kalis through the concept of annotations,
i.e., backtrackable arrays of integers. In this section we show how to use an annotation for
implementing a constraint status marker.

Once a variable in the DIFFEZ constraint has been fixed and—given the instantiation value is
different from zero—the corresponding value has been removed from the other variable’s do-
main no further deductions are possible. In the interest of an efficient implementation it might
therefore appear worthwhile to define a status flag ’do not evaluate this constraint again’ ap-
plicable to the current node and the subtree under this node. We refer to this deactivation of
the constraint as freezing the constraint. Once the search backtracks beyond the node where
the relation has been frozen, the constraint becomes reactivated and is fully evaluated again.

The new constraint class definition looks as follows (notice the new attribute propStatus and
the additional methods freeze and isFrozen).

class DiffEZConstraint: public KUserConstraint
{
protected:
XPRMcontext moselctx;
KIntSetIntAnnotation *propStatus; // 0: constraint is frozen, 1: propagate

public:
DiffEZConstraint(KIntVar &x, KIntVar &y, KProblem *problem,

XPRMcontext ctx);
virtual ~DiffEZConstraint();
virtual void awake(void);
virtual void awakeOnInst(KIntVar &var);
virtual void propagate(void);
virtual void print();
virtual void print(void*ctx, PrintFunctionPtr*pfp);
virtual int askIfEntailed(void);

protected:
void freeze(void);
bool isFrozen(void);

};

Changes to the implementation: The constraint constructor initializes the problem status flag
as an annotation with a single entry (index value 1) and sets its initial value to 1. Annotations
being created within a problem, we pass the Kalis problem as an additional argument to the
constructor. We now also need to define a destructor to delete the proplem status marker.

DiffEZConstraint::DiffEZConstraint(KIntVar &v1, KIntVar &v2, KProblem *problem,
XPRMcontext ctx): KUserConstraint(v1,v2) {
char buf[80];
snprintf(buf,80,"DiffEZ(%s,%s)", v1.getName(), v2.getName());
setName(buf); // Set the constraint name

moselctx = ctx; // Save Mosel context

propStatus = new KIntSetIntAnnotation(problem, getName(), 1, 1, 1);
}

DiffEZConstraint::~DiffEZConstraint()
{
delete propStatus;

};

Point of view propagation algorithms, there are no changes to the ’awake’ and ’askIfEntailed’
methods. We show below the definition of the access methods freeze and isFrozen and
the modified implementation of the propagation algorithm: if the constraint is frozen or if a
variable is fixed to 0 no further checks or propagation are carried out, otherwise, if one variable
is fixed to a non-zero value we remove this value from the other variable’s domain (just as
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before) and freeze the constraint (no further deductions are possible and hence, there is no
need to evaluate this constraint again in this subtree). Similar modifications, and in particular
the test whether the constraint is frozen, can be made for the awakeOnInst method.

void DiffEZConstraint::freeze() {
propStatus->setIntAnnotation(1,0);

}

bool DiffEZConstraint::isFrozen() {
return (propStatus->getIntAnnotation(1)==0);

}

void DiffEZConstraint::propagate() {
if (isFrozen()) return;

/* Case 0: a variable has been fixed to 0 */
if((_vars[0].getIsInstantiated() && _vars[0].getValue()==0) ||

(_vars[1].getIsInstantiated() && _vars[1].getValue()==0))
{
freeze();
return;

}
/* Case 1: variable 1 has been fixed to a single value */

if(_vars[0].getIsInstantiated() && _vars[0].getValue()!=0 &&
_vars[1].canBeInstantiatedTo(_vars[0].getValue()))

{
_vars[1].remVal(_vars[0].getValue());
freeze();

}
else /* Case 2: variable 2 has been fixed to a single value */
if(_vars[1].getIsInstantiated() && _vars[1].getValue()!=0 &&

_vars[0].canBeInstantiatedTo(_vars[1].getValue()))
{
_vars[0].remVal(_vars[1].getValue());
freeze();

}
}

The act of ’freezing’ the DIFFEZ constraint reduces the number of full evaluations of the
propagate method from 46 to 34 in our small example—on a larger scale this is likely to
result in a non-negligible gain of speed.
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Chapter 8

Writing a user branching scheme

The problem described in this chapter is taken from Section 9.1 ‘Wagon load balancing’ of the
book ‘Applications of optimization with Xpress-MP’

A number of railway wagons with a fixed carrying capacity has been reserved to transport a
load of boxes. The weight of the boxes in quintals is given in the following table. How shall
the boxes be assigned to the wagons in order to keep to the limits on the maximum carrying
capacity and to minimize the heaviest wagon load? NB: we work here with a larger problem
instance than the one in the original problem description.

Table 8.1: Weight of boxes

Box 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Weight 34 6 8 17 16 5 13 21 25 31 14 13 33 9 25 25

Box 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Weight 35 6 8 12 16 5 13 21 27 30 11 13 33 9 28 26

Box 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Weight 14 6 8 18 16 5 3 41 5 31 14 23 32 7 12 27

Box 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Weight 15 6 8 12 16 5 23 21 27 3 11 43 31 7 12 29

A heuristic, not necessarily optimal solution to this problem can be obtained with the follow-
ing procedure: until all boxes are distributed to the wagons we choose in turn the heaviest
unassigned box and put it onto the wagon with the least load. This heuristic is known as the
Longest Processing Time (LPT) heuristic.

8.1 Model formulation

Let BOXES = {1, . . . , NB} be the set of boxes, WAGONS = {1, . . . , NW} the set of wagons,
WEIGHTb the weight of box b and WMAX the maximum carrying load of a wagon. The assign-
ment of the boxes to the wagons is represented by discrete variables loadb that take the value
w of the wagon that the box is assigned to. We also introduce auxiliary variables weightbw
that take the value WEIGHTb if box b is assigned to wagon w and 0 otherwise. The two sets of
variables are connected by the following logical relations.

∀b ∈ BOXES,∀w ∈ WAGONS : loadb = w ⇔ weightbw = WEIGHTb

In this problem we wish to minimize the maximum load of the wagons. Such an objective is
sometimes referred to as minimax objective. We define a non-negative variable maxweight
to represent the maximum weight over all the wagon loads. The objective function consists
of minimizing maxweight. The following constraints are established to set maxweight as the
upper bound on every wagon load, alternatively we might use a ’maximum’ constraint.

∀w ∈ WAGONS :
∑

b∈BOXES

weightbw ≤ maxweight
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By proceeding this way, in the optimal solution the minimization will force maxweight to take
the value that corresponds to the weight of the heaviest wagon load.

8.2 Implementation: Mosel model

The following Mosel model shows how the idea of the LPT heuristic can be used to define a
user branching strategy: the variable selection order is fixed based on the weight of the boxes
(in decreasing order) and a user-defined value selection function chooses the wagon with the
least load for a given box.

model "D-1 Wagon load balancing (CP)"
uses "kalis", "mmsystem"

forward function valchoice(x: cpvar): integer

declarations
NB = 64
NW = 5
BOXES = 1..NB ! Set of boxes
WAGONS = 1..NW ! Set of wagons

WEIGHT: array(BOXES) of integer ! Box weights
WMAX: integer ! Weight limit per wagon
BSORT: array(BOXES) of integer ! Boxes sorted in decreasing order

! of their weight

load: array(BOXES) of cpvar ! Wagon the box is loaded on
weight: array(BOXES,WAGONS) of cpvar ! Weight of box loaded on wagon
maxweight: cpvar ! Weight of the heaviest wagon load
vlist: cpvarlist ! Aux. list of variables for enumeration
minW: array(WAGONS) of integer
end-declarations

initializations from ’d1wagon2.dat’
WEIGHT WMAX
end-initializations

! Defining the variables
forall(b in BOXES) do
setdomain(load(b), WAGONS) ! load(b)=w iff box b on wagon w
forall(w in WAGONS) do
setdomain(weight(b,w), {0,WEIGHT(b)})
equiv(load(b)=w, weight(b,w)=WEIGHT(b))
end-do
end-do

! Setting bounds on maximum weight
setdomain(maxweight, ceil((sum(b in BOXES) WEIGHT(b))/NW), WMAX)
forall(w in WAGONS) sum(b in BOXES) weight(b,w) <= maxweight

! Definition of search (fixed variable selection, user value selection)
qsort(SYS_DOWN, WEIGHT, BSORT) ! Sort boxes in decreasing order of weight
forall(b in BOXES) vlist+= load(BSORT(b))
cp_set_branching(assign_var(KALIS_INPUT_ORDER, "valchoice", vlist))

! Problem solving
if cp_minimize(maxweight) then
writeln("Solution: Max weight: ", getval(maxweight))
end-if

! ****************************************************************
! *** Value choice: choose the wagon with the least load
function valchoice(x: cpvar): integer

if (getlb(x)=getub(x)) then
returned:=getlb(x) ! There is only a single value left
else
forall(w in WAGONS) minW(w):= sum(b in BOXES | is_fixed(load(b)) and

getval(load(b))=w) WEIGHT(b)
ct:=getlb(x)
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returned:= ct
minl:= minW(ct)
while(ct<getub(x)) do ! Determine wagon with least load in the domain

nextval:= getnext(x,ct)
ct:= nextval
if minW(ct)<minl then
returned:= ct
minl:= minW(ct)

end-if
end-do

end-if
end-function

end-model

The following model version uses the same branching strategy as the one printed above. This
time the branching strategy is not defined directly in the Mosel model, we use instead the
’LPT’ branching scheme defined in the user extension lptbranch that is presented in the next
section.

model "D-1 Wagon load balancing (using extension)"
uses "kalis"

declarations
NB = 64
NW = 5
BOXES = 1..NB ! Set of boxes
WAGONS = 1..NW ! Set of wagons

WEIGHT: array(BOXES) of integer ! Box weights
WMAX: integer ! Weight limit per wagon

load: array(BOXES) of cpvar ! Wagon the box is loaded on
weight: array(BOXES,WAGONS) of cpvar ! Weight of box loaded on wagon
maxweight: cpvar ! Weight of the heaviest wagon load
end-declarations

initializations from ’d1wagon2.dat’
WEIGHT WMAX
end-initializations

! Defining the variables
forall(b in BOXES) do
setdomain(load(b), WAGONS) ! load(b)=w iff box b on wagon w
forall(w in WAGONS) do
setdomain(weight(b,w), {0,WEIGHT(b)})
equiv(load(b)=w, weight(b,w)=WEIGHT(b))
end-do
end-do

! Setting bounds on maximum weight
setdomain(maxweight, ceil((sum(b in BOXES) WEIGHT(b))/NW), WMAX)
forall(w in WAGONS) sum(b in BOXES) weight(b,w) <= maxweight

! Definition of search (branching scheme ’LPT’ defined in user extension)
cp_set_branching(LPT(load, WEIGHT))

! Problem solving
if cp_minimize(maxweight) then
writeln("Solution: Max weight: ", getval(maxweight))
end-if

end-model

This search strategy immediately finds a first solution of value 225, followed by a second so-
lution of value 224 that is proven optimal within 8354 nodes (run time about 1 second on a
standard PC).
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Table 8.2: Optimal distribution of boxes onto wagons

Wagon Weight Boxes

1 224 8 9 10 11 18 21 30 34 48 58 59 60 63

2 224 14 15 22 24 28 37 40 41 42 43 52 54 57

3 223 3 4 16 17 23 26 33 46 47 51 55 61

4 224 1 2 5 7 27 32 35 39 44 45 53 62 64

5 224 6 12 13 19 20 25 29 31 36 38 49 50 56

8.3 Implementation: user extension

The structure of a user extension defining a branching scheme is very similar to what we have
seen in the previous chapter for the definition of a new constraint relation. In the first place,
we shall discuss the case that corresponds directly to the Mosel implementation of the user
search strategy shown above, namely the implementation of a user value selection strategy
that is employed with a predefined branching scheme (’assignVar’) and a fixed variable order-
ing. At the end of this chapter we also explain how to proceed in the more general case, that
is, how to implement a complete new branching scheme with user value and variable selection
strategies defined on the library level.

Here is once more the list of the major components of a user extension:

1. the declaration of the new subroutine(s) for the Mosel language,

2. the definition of the four Xpress-Kalis interface functions,

3. the implementation of the C function(s) associated with the entries in the list of Mosel
subroutines,

4. the implementation of the C++ class(es) and any related methods as required by the
extension mechanisms of the Artelys Kalis library.

For the definition of the LPT branching scheme we have a single entry in the table of subrou-
tines and correspondingly the definition of one C function implementing the subroutine. The
value selection is implemented by a class derived from the KValueSelector class of the Kalis
library. For a complete branching scheme we also need to implement new classes inheriting
from KBranchingScheme and KVariableSelector.

8.3.1 List of Mosel subroutines

The declaration of the prototype of the new subroutine for the Mosel language is very similar
to what we have seen in Section 7.3.1 for the constraint function. Again, we have just a single
entry in the list of subroutines.

static const int numNewFct = 1; // No. of new functions within this extension

static XPRMdsofct extensions[numNewFct] =
{
{
"LPT", // name of the function within Mosel
10001, // code (unique value within this extension)
XPRM_TYP_EXTN, // return type (here: CP branching, an "external type")
2, // number of arguments
"cpbranching:A.|cpvar|A.i", // signature (external type names in arguments

// are delimited by "|")
lpt_createBranching // function called for branching scheme creation

}
};

The signature of the Mosel subroutine LPT indicates that this is a function returning a new
CP branching scheme (type cpbranching) with an array of finite domain variables as its first
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argument and an array of integers as its second argument. The index sets of the arrays are not
specified, this means that any type and number of indexing sets are accepted by Mosel and
we need to test in the implementation of the C function lpt_createBranching whether the
two arrays have the same indices.

8.3.2 Xpress-Kalis interface functions

The definition of the four Xpress-Kalis interface functions is exactly the same as what we have
seen in Section 7.3.2.

8.3.3 Implementation of the Mosel function

The implementation of the Mosel function does some more work than in the previous example
of constraint definition:

1. We need to make sure that the two arrays passed into the subroutine have the same
index sets (we use the following tests: check whether the arrays have the same number
of elements, the same number of dimensions, and the same index sets).

2. The decision variables must be sorted in decreasing order of the weight values.

3. The decision variable and weight arrays need to be transformed into one-dimensional ar-
rays to conform with the format expected by the Kalis library for the branching variables.

int lpt_createBranching(XPRMcontext ctx,void *libctx)
{
s_mkctx *mkctx;
XPRMarray xArray, DArray;

try {
mkctx=(s_mkctx *)libctx;

// Obtain the arguments from Mosel.
xArray = (XPRMarray)XPRM_POP_REF(ctx);
DArray = (XPRMarray)XPRM_POP_REF(ctx);

// Obtain and compare array sizes and dimensions
if((xArray == NULL) || (DArray == NULL))
{

mm->dispmsg(ctx, "LPTbranch: Empty array in argument.\n");
return XPRM_RT_ERROR;

}
else if(mm->getarrsize(xArray)!=mm->getarrsize(DArray))
{

mm->dispmsg(ctx,"LPTbranch: Arrays have different sizes.\n");
return XPRM_RT_ERROR;
}
else if(mm->getarrdim(xArray)!=mm->getarrdim(DArray))
{

mm->dispmsg(ctx,"LPTbranch: Arrays have different number of dimensions.\n");
return XPRM_RT_ERROR;
}
else
{

int aDim = mm->getarrdim(DArray);
XPRMset *setsx = new XPRMset[aDim];
XPRMset *setsD = new XPRMset[aDim];
mm->getarrsets(xArray,setsx);
mm->getarrsets(DArray,setsD);
for(int i=0;i<aDim;i++)
if(setsx[i]!=setsD[i])
{
mm->dispmsg(ctx,"LPTbranch: Arrays have different index sets.\n");
delete[] setsx;
delete[] setsD;
return XPRM_RT_ERROR;

}
delete[] setsx;
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delete[] setsD;

int aDim = mm->getarrdim(DArray);
int *indices = new int[aDim];
int aSize = mm->getarrsize(DArray);
XPRMalltypes value;

// Copy all variables and weights into a one-dimensional array
LPTData *toSort = new LPTData[aSize];
int ct = 0;
mm->getfirstarrtruentry(xArray, indices);
do {
(void)mm->getarrval(xArray, indices, &value);
KIntVar var = *((Kobject *)(value.ref))->value.pKIntVar;
toSort[ct].var=var;
mm->getarrval(DArray, indices, &value);
toSort[ct].value=value.integer;
ct++;

} while(!mm->getnextarrtruentry(xArray, indices));

// Sort the variable/value array
qsort(toSort, aSize, sizeof(LPTData), cmplpt);

// Copy sorted data into flat arrays
int *DValues = new int[aSize];
KIntVarArray *vars = new KIntVarArray;
for(int i=0; i<aSize;i++)
{
DValues[i] = toSort[i].value;

*vars+=toSort[i].var;
}

// Build the new KObject representing the branching scheme
Kobject *lptbranch = new Kobject;

// Set its class (as a branching scheme)
lptbranch->cls = C_KBranchingScheme;

// Set the variable and value selection strategies
KInputOrder *varSel = new KInputOrder();
LPTValSelector *valSel = new LPTValSelector(*vars, DValues);
lptbranch->value.any = new KAssignVar(*varSel, *valSel, *vars);

// Add new objects to the memory manager
memoryManager.newObject(CCO_KBranchingScheme, lptbranch->value.any);
memoryManager.newObject(CCO_KIntVarArray, vars);
memoryManager.newObject(CCO_Kobject, lptbranch);
memoryManager.newObject(CCO_KVariableSelector, varSel);
memoryManager.newObject(CCO_KValueSelector, valSel);
memoryManager.newObject(CCO_IntArray, DValues);
memoryManager.newObject(CCO_IntArray, indices);

delete[] toSort;

// Return result to Mosel
XPRM_PUSH_REF(ctx,lptbranch);

// Everything went alright: return "Xpress-Mosel RunTime ok".
return XPRM_RT_OK;

}
} catch(ArtelysException &e) {

mm->dispmsg(ctx, "LPTbranch: Artelys Exception occured during constraint creation.\n");
mkctx->saved_ctx=NULL;
return XPRM_RT_ERROR;

} catch (...) {
mm->dispmsg(ctx, "LPTbranch: Unknown exception occured during constraint creation.\n");
mkctx->saved_ctx=NULL;
return XPRM_RT_ERROR;

}

// Everything went alright: return "Xpress-Mosel RunTime ok".
return XPRM_RT_OK;

}
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Syntax: The C function called by Mosel as the implementation of the subroutine LPT has a
fixed format, specified by the Mosel Native Interface (NI). The first argument is always the
Mosel execution context and the second is an (optional) pointer to the library context, that is,
for all Xpress-Kalis extensions, the execution context of the kalis module.

Subroutine arguments: The original arguments of the Mosel subroutine need to be retrieved
in the order of their definition from the Mosel stack. Here we use the macro XPRM_POP_REF
(stack access for Xpress-Kalis types or any kind of structured data) since we are working with
arrays. The reader is reminded that always all arguments must be taken from the stack even if
some arguments are perhaps not required in a specific case.

Xpress-Kalis types: In this example both arguments have the type array in the Mosel lan-
guage. The array of real is retrieved using standard Mosel functionality. The array of
cpvar needs to be treated differently. Within Kalis the type cpvar corresponds to the class
KIntVar. However, all Xpress-Kalis types are passed between Mosel and the extension as ob-
jects of the class Kobject and the decision variables therefore need to be retrieved as such
and are then converted to KIntVar. The same remark applies to the new branching scheme
lptbranch created by this function: it is declared as a Kobject, its actual class is specified
in the attribute cls, and its definition is saved into the value of the object. For a list of the
Mosel types defined by kalis and their correspondence on the library level please see the table
7.1 in the previous chapter.

Return value and result of execution: This library function implements a Mosel function, that
means we need to pass the function return value back to Mosel, via the Mosel stack. Since we
return an Xpress-Kalis object (a new branching scheme) we need to use the stack access macro
XPRM_PUSH_REF.
Error handling on the C level is implemented via the result value of the C function (codes
XPRM_RT_OK or XPRM_RT_ERROR).

For completeness’ sake, here are the auxiliary data structure and comparison function that are
used by the qsort function:

typedef struct {
KIntVar var;
int value;

} LPTData;

static int cmplpt(const void *a1,const void *a2)
{
if(((LPTData *)a1)->value<((LPTData *)a2)->value) return 1;
else
if(((LPTData *)a1)->value>((LPTData *)a2)->value) return -1;
else return 0;

}

8.3.4 The Kalis value selection strategy class

Our value selection class is derived from the Kalis class KValueSelector. Besides some stan-
dard methods (constructor, copy-constructor, destructor) every value selection class needs to
define the method selectNextValue that specifies which value to choose next for branching
on a given variable.

In summary, we have the following class definintion for our LPT value selection strategy (in file
lptbranch.h):

class LPTValSelector: public KValueSelector
{
protected:
KIntVarArray *vars;
int *Dvalues; // Weight values
int *Load; // Load values
int minVal,maxVal; // Smallest / largest domain values for vars

public:
LPTValSelector(KIntVarArray &vars, int *Dvals);
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LPTValSelector(const LPTValSelector &LPTValSelector);
virtual ~LPTValSelector();
virtual int selectNextValue(KIntVar* intVar);
virtual KValueSelector* getCopyPtr() const;

};

Here follows the complete listing of the implementation of this class. Within the constructor
method we determine the smallest and largest values occurring in all variables’ domains and
initialize the auxiliary array Load that is used by the implementation of the variable selec-
tion. The method getCopyPtr is used internally by the Kalis library for memory management
purposes.

// Constructor
LPTValSelector::LPTValSelector(KIntVarArray &varArray, int *DVals)
{
int i;
vars = new KIntVarArray(varArray);
memoryManager.newObject(CCO_KIntVarArray, vars);
Dvalues = new int[vars->getNumberOfElements()];
for(i=0; i<vars->getNumberOfElements(); i++) Dvalues[i] = DVals[i];

minVal = vars->getElt(0)->getInf();
maxVal = vars->getElt(0)->getSup();
for(i=1; i<vars->getNumberOfElements(); i++)
{
if(vars->getElt(i)->getInf()<minVal) minVal=vars->getElt(i)->getInf();
if(vars->getElt(i)->getSup()>maxVal) maxVal=vars->getElt(i)->getSup();

}
Load = new int[maxVal-minVal+1];
memset(Load, 0, (maxVal-minVal+1)*sizeof(int));
memoryManager.newObject(CCO_IntArray, Load);
memoryManager.newObject(CCO_IntArray, Dvalues);

}

LPTValSelector::LPTValSelector(const LPTValSelector &LPTValSelectorToCopy)
{
vars = LPTValSelectorToCopy.vars;
Dvalues = LPTValSelectorToCopy.Dvalues;
minVal = LPTValSelectorToCopy.minVal;
maxVal = LPTValSelectorToCopy.maxVal;
Load = new int[maxVal-minVal+1];
memoryManager.newObject(CCO_IntArray, Load);
memcpy(Load,LPTValSelectorToCopy.Load,sizeof(LPTValSelectorToCopy.Load));

}

LPTValSelector::~LPTValSelector()
{ // nothing to be done
}

KValueSelector* LPTValSelector::getCopyPtr() const
{
return new LPTValSelector(*this);

}

The value selection strategy properly speaking is implemented by the method selectNextValue.
If the variable has just a single value left in its domain we return this value. Otherwise, we cal-
culate the fixed load for each wagon and return the value from the domain of our branching
variable that is associated with the least load.

int LPTValSelector::selectNextValue(KIntVar *aVar)
{ // Return value in the variable’s domain associated with the least load
int i=0, minl;
int val;

if (aVar->getInf() == aVar->getSup()) val = aVar->getInf();
else
{
memset(Load, 0, (maxVal-minVal+1)*sizeof(int));

// Calculate load for all feasible values
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for(i=0; i<vars->getNumberOfElements(); i++)
if(vars->getElt(i)->getIsInstantiated())
Load[(int)round(vars->getElt(i)->getValue()) - minVal] += Dvalues[i];

// Return value of least load
i = aVar->getInf();
minl = Load[i-minVal];
val = i;
int next = i;
while(next<aVar->getSup())
{

aVar->getNextDomainValue(next);
i = next;
if(Load[i-minVal]<minl)
{
val = i;
minl = Load[i-minVal];

}
}

}
return val;

}

8.4 Implementing a complete branching scheme

The previous section defines a new branching scheme for the Mosel language that is formed
(on the library level) by a predefined branching scheme used with a predefined variable selec-
tion strategy and a user-implemented value selection strategy. We now show how to imple-
ment a complete branching scheme in an XPress-Kalis extension. We might wish, for instance,
to define a second version of the LPT branching scheme with an additional argument (an in-
teger) denoting the maximum number of branches from each node. This new version can be
added to the list of subroutines of the extension library lptbranch or be implemented as a
separate file, resulting in a second extension library, say lptbranch2. In both cases, as always
with Mosel modules, we may use the same name for the subroutine in the Mosel language,
that is, define an overloaded version. The rules for overloading Mosel subroutines the fol-
lowing: (1) the overloaded versions must be different from each other in at least one (type
of) argument, and (2) all subroutines of the same name must be either all procedures or all
functions.

From the Mosel point of view only minor modifications are required for this new version: the
signature in the entry in the list subroutines includes the third argument:

"cpbranching:A.|cpvar|A.ii"

the value of which needs to be retrieved from the stack in the implementation of the Mo-
sel function. Other modifications to the function lpt_createBranching relate to the new
classes we are about to define:

// Set the variable and value selection strategies
lptbranch->value.any = new LPTAssignVar(vars, DValues, maxb);

The creation of the variable and value selection strategy objects have been moved into the
constructor of the LPTAssignVar branching scheme, thus saving on the creation of one copy
of each of these.

8.4.1 The Kalis variable selection strategy class

In the present example there really is no necessity of implementing our own variable selection
strategy. Nevertheless, for completeness’ sake we show re-implementation of the ’INPUT_-
ORDER’ selection criterion.

There is no need to store any additional information with this variable selector, the class defi-
nition therefore simply consists of the minimum set of methods required of variable selectors:
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class LPTVarSelector: public KVariableSelector
{
public:
LPTVarSelector(void);
LPTVarSelector(const LPTVarSelector &LPTVarSelector);
virtual ~LPTVarSelector();
virtual KIntVar* selectNextVariable(KIntVarArray* intVarArray);
virtual KVariableSelector* getCopyPtr() const;

};

Nothing specific needs to be done by the constructors and correspondingly the destructor, their
definition is empty. The actual implementation of the strategy is in the method selectNextVariable:
this method returns the first uninstantiated variable that is found in the array of variables to
be enumerated, or NULL if none is found.

KIntVar* LPTVarSelector::selectNextVariable(KIntVarArray* vars)
{ // Return first uninstantiated variable in sorted order
int i=0;

while ((i<vars->getNumberOfElements()) &&
(vars->getElt(i)->getIsInstantiated())) i++;

if(i<vars->getNumberOfElements())
return vars->getElt(i);

else
return NULL;

}

8.4.2 The Kalis branching scheme class

The branching scheme shown below inherits from the class KBranchingScheme. Besides the
constructors/destructors, a branching scheme needs to implement a list of specific methods:

• selectNextBranchingObject: selection of the object to branch on (here; a decision
variable)

• finishedBranching: whether all branches from a node are done

• getNextBranch: determine how to form the next branch (here: select a value)

• goDownBranch: what to do on entering a branch

• goUpBranch: what to do when moving up out of a branch

• freeAllocatedObjectsForBranching: for memory management related to branch-
ing

This is the class definition for our ’AssignVar with limit on branches’ scheme:

class LPTAssignVar: public KBranchingScheme
{
protected:
KIntVarArray* vars;
LPTVarSelector* varSelect;
LPTValSelector* valueSelect;
int maxBranch;

public:
// Constructors
LPTAssignVar(KIntVarArray* intVarArray, int *Dvals);
LPTAssignVar(KIntVarArray* intVarArray, int *Dvals, int mb);
// Copy constructor
LPTAssignVar(const LPTAssignVar& LPTAssignVarToCopy);
// Destructor
virtual ~LPTAssignVar();

// Methods
virtual void* selectNextBranchingObject();
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virtual bool finishedBranching(void* branchingObject,
void* branchingInformation, int currentBranchNumber);

virtual void* getNextBranch(void* branchingObject,
void* branchingInformation, int currentBranchNumber);

virtual void goDownBranch(void* branchingObject,
void* branchingInformation,int currentBranchNumber);

virtual void goUpBranch(void* branchingObject,
void* branchingInformation, int currentBranchNumber);

virtual void freeAllocatedObjectsForBranching(void* branchingObject,
void* branchingInformation);

virtual KBranchingScheme* getCopyPtr() const;
};

The constructor creates and saves the variable and value selection strategies to be used within
the branching scheme and the limit on the branch number specified when calling the branch-
ing scheme in the Mosel model.

LPTAssignVar::LPTAssignVar(KIntVarArray* intVarArray, int *DVals): KBranchingScheme()
{
varSelect = new LPTVarSelector();
valueSelect = new LPTValSelector(*intVarArray, DVals);
memoryManager.newObject(CCO_KVariableSelector, varSelect);
memoryManager.newObject(CCO_KValueSelector, valueSelect);
vars = intVarArray;
maxBranch = -1;

}

LPTAssignVar::LPTAssignVar(KIntVarArray* intVarArray, int *DVals, int mb):
KBranchingScheme()

{
varSelect = new LPTVarSelector();
valueSelect = new LPTValSelector(*intVarArray, DVals);
memoryManager.newObject(CCO_KVariableSelector, varSelect);
memoryManager.newObject(CCO_KValueSelector, valueSelect);
vars = intVarArray;
maxBranch = mb;

}

LPTAssignVar::LPTAssignVar(const LPTAssignVar &LPTAssignVarToCopy)
{
varSelect = LPTAssignVarToCopy.varSelect;
valueSelect = LPTAssignVarToCopy.valueSelect;
vars = LPTAssignVarToCopy.vars;
maxBranch = LPTAssignVarToCopy.maxBranch;

}

LPTAssignVar::~LPTAssignVar()
{ // nothing to be done
}

The selection of the next branching object simply calls our variable selection strategy. If a
limit on the number of branches from a node has been specified this value is checked by the
finishedBranching method. The getNextBranch method calls our value selection strategy.

// Select next branching object
void* LPTAssignVar::selectNextBranchingObject() {

return varSelect->selectNextVariable(vars);
}

// Indicate whether all branches from a node have been explored
// (branch numbering starts with 1)
bool LPTAssignVar::finishedBranching(void* branchingObject,
void* branchingInformation, int currentBranchNumber)

{
if (maxBranch>-1)
return ( (currentBranchNumber >= maxBranch) ||

( ((KIntVar*) branchingObject)->getDomainSize() < 1) );
else
return ( ((KIntVar*) branchingObject)->getDomainSize() < 1);

}
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// Getting information for next branch
void* LPTAssignVar::getNextBranch(void* branchingObject,
void* branchingInformation, int currentBranchNumber)

{
int nextValue = valueSelect->selectNextValue((KIntVar*) branchingObject);
int *ret = new int[1];
ret[0] = nextValue;
memoryManager.newObject(CCO_IntArray, ret);
return ret;

}

In the ’AssignVar’ scheme a new branch is formed by fixing the branching variable to the cho-
sen value (goDownBranch). When moving up out of the branch that has just been explored
the branching value is removed from the variable’s domain (goUpBranch). In this implementa-
tion nothing needs to be done to free branching objects since the only information saved (the
branching value) is handled by our memory manager.

// Going down one level in the branching tree
void LPTAssignVar::goDownBranch(void* branchingObject,
void* branchingInformation, int currentBranchNumber)

{
((KIntVar*) branchingObject)->instantiate((*((int*) branchingInformation)));

}

// Moving up one level in the branching tree
void LPTAssignVar::goUpBranch(void* branchingObject,
void* branchingInformation, int currentBranchNumber)

{
((KIntVar*) branchingObject)->remVal((*((int*) branchingInformation)));

}

// Delete allocated objects
void LPTAssignVar::freeAllocatedObjectsForBranching(void* branchingObject,
void* branchingInformation)

{ // Handled by memory manager
}

KBranchingScheme* LPTAssignVar::getCopyPtr() const
{
return new LPTAssignVar(*this);

}
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Appendix A

Trouble shooting

• No license found: to work with Kalis for Mosel, the Xpress-MP licensing system, and the
Xpress-Kalis module must be installed. You need to copy the license file that you will
receive from your software vendor into the Xpress-MP installation directory and set the
environment variable XPRESSDIR to point to this directory.

• The Xpress-Kalis module is not found: if the file kalis.dso is not installed in the direc-
tory dso of the Mosel distribution, then the environment variable MOSEL_DSO must be
defined with the location of this file.
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Appendix B

Glossary of CP terms

Some terms commonly used in CP might require some explanation for readers with an Opera-
tions Research background. The following list is an extract from [Hei99].

Finite domain constraint problem/constraint satisfaction problem (CSP): defined by a finite set
of variables taking values from finite domains and a (conjunctive) set of constraints on these
variables. The objective may be either finding one solution (any or an optimal) or all solu-
tions (consistent assignment of values to the variables so that all the constraints are satisfied
simultaneously) for the given instance. The term constraint network is frequently employed
to denote CP problems in allusion to the graphical representation as a hyper graph (constraint
graph), where nodes represent variables, and constraints are (hyper) arcs linking several nodes.
There is no standard problem representation in CP.

Model: a CP model specifies all variables, their domains and their declarative meaning and
conceptual constraints imposed on them (as opposed to actual constraints that are used to
implement the properties of the solution and the search process). In CP in general, a model
preserves much problem-specific knowledge about variables and the relations between them.
This allows the development and application of more efficient specialized solution strategies.

Variable: object that has a name and a domain (also referred to as decision variable).

Domain: the set of values (also: labels) a variable may take. In Xpress-Kalis, it may consist of
discrete values, or intervals of integers. When solving CP problems active use of the domain
concept is made. At any stage, the domain of a variable is the set of values that cannot be
proved to be inconsistent (with the constraints on this variable) using the available consistency
checking methods. Assigning or restricting domains is often interpreted as unary constraints
on the corresponding variables.

Instantiation of a set of variables is an assignment of a value to each variable from its domain,
also called labeling of each variable with a value from its domain.

Consistent instantiation of a constraint network is an instantiation of the variables such that
the constraints between variables are satisfied, also called admissible/satisfied instantiation,
consistent assignment of values, or consistent labeling. Solution is often used as a synonym
for consistent instantiation, but may also denote the result after applying any (local/partial)
consistency algorithm.

Constraint: a relation over a set of variables limiting the combination of values that these
variables can take; constraints may also be interpreted as mappings from the domains of the
variables onto the Boolean values true and false. A (conceptual) constraint can sometimes be
implemented in different ways enforcing various levels of consistency (see below) with differ-
ent computational overhead. So-called global constraints subsume a set of other constraints
(for instance an ‘all-different’ relation on a set of variables replaces pair wise disequality con-
straints). Global constraints use specific propagation/consistency algorithms that render them
more efficient than the set of constraints they replace.

Redundant constraints: a constraint is redundant with respect to a set of constraints, if it is
satisfied when the set of constraints is satisfied. Although redundant constraints do not change
the set of solutions (consistent instantiations) of a problem, in practice it may be useful to add
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redundant constraints to the model formulation because they can help CP solution procedures,
particularly by achieving more powerful constraint propagation.

System of constraints: a conjunctive set of constraints, usually built up incrementally.

Constraint solving: deciding the consistency or satisfiability of a system of constraints.

Solution methods: finite domain CP problems are usually solved by tree search methods (Branch-
and-Bound for optimization, Branch-and-Prune for decision problems) that enumerate the pos-
sible values of the variables coupled with consistency algorithms. In tree search methods with
consistency checking the local consistency algorithm is triggered by the propagation of the
domain changes of the branching variable. For optimization usually a cost constraint is intro-
duced that propagates to the variables. It is updated (in the case of minimization: bounded to
be smaller than the solution value) each time a new solution is found.

Consistency techniques and constraint propagation: Consistency algorithms remove inconsis-
tent values from the domains of variables. Informally speaking, a consistency algorithm is
‘stronger’ than another one if it reduces the domains further, i.e., it establishes a higher level
of consistency. In finite domain CP, typically local consistency algorithms are used. Local or
partial consistency signifies that only subsets of the constraints of a system of constraints are
simultaneously satisfied. A locally consistent (according to some notion of consistency, such as
arc-consistency) constraint network can be obtained by propagating iteratively the effects of
each constraint to all other constraints it is connected to through its variables until a stable
state is reached. This process is referred to as constraint propagation. Propagation properties
of constraints vary, e.g., due to their implementation, or the types of variables used. Possi-
ble events triggering their evaluation may be variable instantiation, modification of domain
bounds, removing of value(s) from a domain, etc.

Backtrack search augmented by constraint propagation:
while not solved and not infeasible

check/establish (local) consistency
if a dead end is detected

then backtrack to the first open node
else

select a variable
select a value for the variable

Search algorithms/strategies: The values for variables come out of an enumeration process.
‘Intelligent’ enumeration strategies adapted to special types of constraints and variables are a
central issue in CP. The search is controlled by problem specific heuristics, strategies from Math-
ematical Programming or the expert’s knowledge; fixing variables to trial values is possible.
One can distinguish variable and value selection heuristics. Due to the way the backtracking
mechanism works, usually depth-first search is used.

Constraint solver: (Also: constraint engine.) Distinction between exact and incomplete solvers.
Exact solvers guarantee the satisfiability of the system of constraints at any stage of the com-
putations, they usually work on rational numbers (trees of rationals and linear constraints). In-
complete solvers are designed for more complex domains such as integers where checking and
maintaining consistency of the overall system is too expensive or not possible with presently
known algorithms. These solvers work with simplified calculations establishing some sort of
partial (local) consistency among constraints; usually simply stating constraints does not pro-
duce a solution, an enumeration phase (searching for solutions) is necessary.
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CSP, see constraint satisfaction problem
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setsetuptimes, 81
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solving, 6
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sum

condition, 11
symmetry breaking, 28, 75
system of constraints, 120

T
target value, 57
task

predecessor, 67
successor, 67

task selection, 89
task-based

enumeration, 83
task_serialize, 56, 85
time limit, 28

U
upper bound, 62
user constraint, 50
user search, 61
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