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1 Introduction

This quick reference guide presents a collection of MIP model formulations for Xpress-Optimizer,
including standard linearization techniques involving binary variables, the use of more specific
modeling objects such as SOS and partial integer variables, and reformulations of logic
constraints through indicator constraints.

1.1 Integer Programming entities supported in Xpress

e Binary variables (BV) — decision variables that must take either the value 0 or the value 1,

sometimes called 0/1 variables;
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Integer variables (Ul) — decision variables that must take on integer values. Some upper limit
must be specified;

Partial integer variables (Pl) — decision variables that must take integer values below a
specified limit but can take any value above that limit;

Semi-continuous variables (SC) — decision variables that must take on either the value 0, or
any value in a range whose lower an upper limits are specified. SCs help model situations
where, if a variable is to be used at all, it has to be at some minimum level;

Semi-continuous integer variables (SI) — decision variables that must take either the value 0,
or any integer value in a range whose lower and upper limits are specified;

Special ordered sets of type one (SOS1) — an ordered set of variables of which at most one
can take a nonzero value;

Special ordered sets of type two (5052) — an ordered set of variables of which at most two
can be nonzero, and if two are nonzero, they must be consecutive in their ordering.

Remarks

The solution values of binary and integer variables are real valued, not integer valued.

At an optimal MIP solution, the actual values of the binary and integer variables will be
integer — to within a certain tolerance.

1.2 Integer Programming entities in Mosel

Definition: integer programming types are defined as unary constraints on previously declared
decision variables of type mpvar; name the constraints if you want to be able to access/modify
them.

declarations
d: mpvar
ifmake: array (PRODS,LINES) of mpvar
X: mpvar

end-declarations

d is_binary ! Single binary variable
forall(p in PRODS, 1 in LINES)

ifmake (p,1l) is_binary ! An array of binaries
ACtr:= x is_integer ! An integer variable
x >= MINVAL ! Lower bound on the variable
X <= MAXVAL ! Upper bound on the variable

! MINVAL,MAXVAL: values between -MAX_REAL and MAX_REAL

ACtr:= x is_partint 10 ! Change type to partial integer

ACtr:= 0 ! Delete constraint
! Equivalently:
ACtr:= x is_continuous ! Change type to continuous

Solving: with Xpress-Optimizer (Mosel module mmxprs) any problem containing integer
programming entities is automatically solved as a MIP problem, to solve just the LP relaxation use
option xPrS_TOP (if following up with MIP search) or xPRS_L1IN (ignore all MIP information) for
maximize /minimize.

Accessing the solution: for obtaining solution values of decision variables and linear expressions
use getsol (alternative syntax: .sol); the MIP problem status is returned by the function
getparam ("XPRS_MIPSTATUS")
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case getparam ("XPRS_MIPSTATUS") of
XPRS_MIP_NOT_LOADED,

XPRS_MIP_LP_NOT_OPTIMAL: writeln("Solving not started")
XPRS_MIP_LP_OPTIMAL: writeln ("LP unbounded or infeasible")
XPRS_MIP_NO_SOL_FOUND,

XPRS_MIP_INFEAS:
XPRS_MIP_SOLUTION,

XPRS_MIP_OPTIMAL:

end-case

writeln ("MIP search started, no solution")

writeln ("MIP solution: ", , getobjval)

writeln("x: ", getsol(x))
writeln("d: ", d.sol)

1.3 Integer Programming entities in BCL

FICO

The BCL code extracts in this document are formulated for the BCL C++ interface. The other BCL
interfaces (C, Java, C#, VB) work similarly, please refer to the Xpress documentation for further

detail.

Definition: Integer Programming types are specified when creating decision variables (type

XPRBvar); types may be changed with setType.

XPRBprob prob ("test");

XPRBvar d, ifmake[NP] [NL], x;

int p,1;

d = prob.newVar ("d", XPRB_BV); // Single binary variable

for (p = 0; p < NP; p++)
for (1 = 0; 1 < NL; 1++)
ifmake[p] [1] = prob.newVar ("ifmake", XPRB_BV);

// An array of binaries

X = prob.newVar ("x", XPRB_UI, MINVAL, MAXVAL);
// MINVAL,MAXVAL: reals between —-XPRB_INFINITY and XPRB_INFINITY

x.setType (XPRB_PI) ;
x.setLim (10);

x.setType (XPRB_PL) ; // Change type to continuous

// An integer variable

// Change type to partial integer

Solving: use option "g" in solve /minim/maxim to solve a problem as a MIP problem (per

default only the LP relaxation is solved).

prob.minim("g") ;

Accessing the solution: for obtaining solution values of decision variables and linear expressions

use getSol; the MIP problem status is returned by getMIPstatus.

int mipstatus = prob.getMIPStat () ;

switch (mipstatus) {

case XPRB_MIP_NOT_LOADED:

case XPRB_MIP_LP_NOT_OPTIMAL:
cout << "Solving not started" << endl;
break;

case XPRB_MIP_LP_OPTIMAL:
cout << "LP unbounded or infeasible" << endl;
break;

case XPRB_MIP_NO_SOL_FOUND:

case XPRB_MIP_INFEAS:
cout << "MIP search started, no solution" << endl;
break;

case XPRB_MIP_SOLUTION:
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case XPRB_MIP_OPTIMAL:
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cout << "MIP solution: " << prob.getObjval() << endl;
break;

}

cout << x.getName () << ": " << x.getSol() << endl;

2 Binary variables

Binary decision variables

o take value 0 or 1

o model a discrete decision

yes/no
on/off

open/close
build or don’t build
strategy A or strategy B

2.1 Logical conditions

Projects A, B, C, D, ... with associated binary variables a, b, ¢, d, ... which are 1 if we decide to do

the project and 0 if we decide not to do the project.

At most N of A, B, C,... a+b+c+...<N
At least N of A, B, C,... a+b+c+...>N
Exactly N of A, B, C,... a+b+ct...=N
If AthenB b>a
Not B b=1-b
If A then not B a+b<1
If not A then B a+b>1
If A then B, and if B then A a=b
If AthenB and C; A only if Band C b>aandc>a
or alternatively:a < (b+c) /2
If AthenB or C b+c>a
If B or Cthen A a>banda>c
or alternatively: a > J - (b +¢)
If Band C then A a>b+c—1
If two or more of B, C, D or E then A az%-(b+c+d+e—1)

. btctd+...—M+1
If M or more of N projects (B, C, D, ...) then A a > >*{Fr-—5m2

2.2 Minimum values

y = min{xq, Xz} for two continuous variables x1, x,

e Must know lower and upper bounds

Binary variables (©20009 Fair Isaac Corporation. All rights reserved.
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e Introduce binary variables d, d; to mean

d; 1if x; is the minimum value;
0 otherwise

o MIP formulation:

y <Xxi [2.1]
y<x [2.2]
y > x1—(Us = Lmin)(1 —dy)  [3.1]
y=>x2— (U — Lymin)(1 —d2)  [3.2]
di+dry =1 [4]

e Generalization toy = min{xy, Xz, ..., Xn}

L <x < U; [1.i]
Yy <X [2.i]
Yy > Xi — (Ui = Lyin)(1 = d)  [3.i]
E,' di =1 (4]

2.3 Maximum values
y = max{xs, X, ..., Xn} for continuous variables xi, ..., x,
e Must know lower and upper bounds
Li<xi <U; [1.i]

e Introduce binary variables dy, ..., d,
d; = 1if x; is the minimum value, 0 otherwise

o MIP formulation

Li<xi < U [1.i]
Y = X [2.i]
y<x+ (Umax - Li)(‘I - dl) [3|]
Z,’ di =1 [4]

2.4 Absolute values
y = |X1 — Xz| for two variables x;, x; with 0 < x; < U
e Introduce binary variables d, d; to mean

di : 1if x4 — x5 is the positive value
d> : 1if x — xq is the positive value

FICO
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o MIP formulation

0<x;<U [1.i]
0<y-(x1—x))<2-U-d, [2]
0<y—-(2—-x)<2-U-dy [3]
di+dr=1 [4]

2.5 Logical AND

d = min{d4, d,} for two binary variables d,, d;, or equivalently

d =d; - d;, (see Section 2.8), or
d =d; AND d, as a logical expression

e |P formulation

d < dq [1.1]
d<ad, [1.2]
d>di+d,—1 [2]
d>0 (3]

e Generalization tod = min{d4, d;, ..., dn}

d<d, [1.i]
d>5,di—(n-1) [2]
d>0 (3]

Note: equivalenttod =d; - d;-... d,
and (as a logical expression): d = d; AND d; AND

2.6 Logical OR

d = max{d4, d;} for two binary variables ds, d;, or
d =d; OR d; as a logical expression

e |P formulation

d > d [1.1]
d>ad, [1.2]
d<di+d; [2]
d<1 [3]

e Generalization to d = max{d4, d,, ..., dn}

d>d; [1.1]
d<Y.di (2]
da<i [3]

Note: equivalenttod =d; ORd,... ORd,

... AND d,,

FICO
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2.7 Logical NOT

d = NOT d4 for one binary variable d;

e |P formulation

d=1-d,

2.8 Product values

y = x - d for one continuous variable x, one binary variable d

e Must know lower and upper bounds
L<x<U
e MIP formulation:

Ld <y <Uud [1]
LA-d)<x-y<U(l-d [2]

Product of two binaries: d3 =dq - d;

o MIP formulation:

dz < dy
d; < d;
d32d1+d2—1

2.9 Disjunctions

Either 5 <x <10 0or 80 < x < 100
e Introduce a new binary variable:
ifupper: 0if5 < x <10; 1if80 < x <100

e MIP formulation:

x <10+ (100 — 10) - ifupper [1]
x>5+(80—5) - ifupper [2]

e Generalization to Either Ly <> ; Aix; < Uj or L, < ), Aix; < Uy (with U; <L)

Yo AiXi < Uy + Uy — Un) - ifupper  [1]

> Aixi > Ly + (L — Ly) - ifupper [2]

Binary variables (©20009 Fair Isaac Corporation. All rights reserved. page 7
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2.10 Minimum activity level

Continuous production rate make that may be 0 (the plant is not operating) or between allowed
production limits MAKEMIN and MAKEMAX

e Introduce a binary variable ifmake to mean

ifmake : 0 if plant is shut
1 plant is open

MIP formulation:

make > MAKEMIN - ifmake  [1]
make < MAKEMAX - ifmake [2]
Note: see Section 3.5 for an alternative formulation using semi-continuous variables

e The ifmake binary variable also allows us to model fixed costs

— FCOST: fixed production cost
— VCOST: variable production cost

MIP formulation:

cost = FCOST - ifmake + VCOST - make [3]
make > MAKEMIN - ifmake [1]
make < MAKEMAX - ifmake [2]

3 MIP formulations using other entities

In principle, all you need in building MIP models are continuous variables and binary variables.
But it is convenient to extend the set of modeling entities to embrace objects that frequently
occur in practice.

Integer decision variables

e values 0, 1, 2, ... up to small upper bound
e model discrete quantities

e try to use partial integer variables instead of integer variables with a very large upper bound
Semi-continuous variable

e may be zero, or any value between the intermediate bound and the upper bound

e Semi-continuous integer variables also available: may be zero, or any integer value between
the intermediate bound and the upper bound

Special ordered sets

o set of decision variables

MIP formulations using other entities (©20009 Fair Isaac Corporation. All rights reserved. page 8



MIP formulations I ICQ

e each variable has a different ordering value, which orders the set
e Special ordered sets of type 1 (SOS1): at most one variable may be non-zero

e Special ordered sets of type 2 (5052): at most two variables may be non-zero; the non-zero
variables must be adjacent in ordering

3.1 Batch sizes

Must deliver in batches of 10, 20, 30, ...

e Decision variables

nship number of batches delivered: integer
ship  quantity delivered: continuous

e Constraint formulation

ship = 10 - nship

3.2 Ordered alternatives

Suppose you have N possible investments of which at most one can be selected. The capital cost is
CAP; and the expected return is RET;.

e Often use binary variables to choose between alternatives. However, SOS1 are more
efficient to choose between a set of graded (ordered) alternatives.
e Define a variable d; to represent the decision, d; = 1 if investment i is picked

e Binary variable (standard) formulation
d; : binary variables

Maximize: ret = ) ; RET;d;
Zi di<1
> i CAPid; < MAXCAP

e SOS1 formulation
{d;; ordering value CAP;} : SOS1

Maximize: ret = ), RET;d;
Zi di<1
> CAPid; < MAXCAP

e Special ordered sets in Mosel

- special ordered sets are a special type of linear constraint
- the set includes all variables in the constraint

- the coefficient of a variable is used as the ordering value (i.e., each value must be
unique)

MIP formulations using other entities (©20009 Fair Isaac Corporation. All rights reserved. page 9
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declarations
I=1..4
d: array(I) of mpvar
CAP: array(I) of real
My_Set, Ref_row: linctr
end-declarations

My_Set:= sum(i in I) CAP(i)xd(i) is_sosl

or alternatively (must be used if a coefficient is 0):

Ref_row:= sum(i in I) CAP (i)=*d (i)
makesosl (My_Set, union(i in I) d(i), Ref_row)

e Special ordered sets in BCL

— aspecial ordered set is an object of type xPRBsos

- the set includes all variables from the specified linear expression or constraint that have
a coefficient different from 0

- the coefficient of a variable is used as the ordering value (i.e., each value must be
unique)

XPRBprob prob ("testsos");
XPRBvar d[I];

XPRBexpr le;

XPRBsos My_Set;

double CAPI[I];

int i;

for (i=0; i<I; i++) d[i] = prob.newVar ("d");

for (i=0; i<I; i++) le += CAP[i]*d[i];
My_Set = prob.newSos ("My_Set", XPRB_S1, 1le);

3.3 Price breaks

All items discount: when buying a certain number of items we get discounts on all items that we
buy if the quantity we buy lies in certain price bands.

A

Cost COST,

| cosr,

COsT,

\/

less than B, COST; each
> Biand < B, COST, each
> B, and < B3 COST; each

e Define binary variables b; (i=1,2,3), where b; is 1 if we pay a unit cost of COST;.

e Real decision variables x; represent the number of items bought at price COST;.

MIP formulations using other entities (©2009 Fair Isaac Corporation. All rights reserved. page 10
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e The total cost is given by x = 3", x;
e MIP formulation :
2ibi=1

x1 < By - by
Bi_1-b;<x;<Bj-bjfori=23

where the variables b; are either defined as binaries, or they form a Special Ordered Set of
type 1 (SOS1), where the order is given by the values of the breakpoints B;.

Incremental pricebreaks: when buying a certain number of items we get discounts incrementally.
The unit cost for items between 0 and B, is C4, items between By and B, cost C, each, etc.

A
Cost ——]COST,

CosT,

COST,

>

X

Formulation with Special Ordered Sets of type 2 (50S2):

e Associate real valued decision variables w; (i = 0, 1, 2, 3) with the quantity break points
Bo = 0, B1, Bz and B3.

e Cost break points CBP; (=total cost of buying quantity B)):

CBPy =0
CBP, = CBP,',‘| + C,' . (B, — B,‘,‘|) fori= 1,2, 3

e Constraint formulation:

Zi wi = 1
TotalCost =), CBP; - w;
X = Zi B; - w;

where the w; form a SOS2 with reference row coefficients given by the coefficients in the
definition of the total amount x.

For a solution to be valid, at most two of the w; can be non-zero, and if there are two
non-zero they must be contiguous, thus defining one of the line segments.

¢ Implementation with Mosel (is_sos2 cannot be used here due to the 0-valued coefficient
of wy):

Defx := x = sum(i in 1..3) B(i)+*w (1)
makesos2 (My_Set, union(i in 0..3) w(i), Defx)

Formulation using binaries:

MIP formulations using other entities (©2009 Fair Isaac Corporation. All rights reserved. page 11
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e Define binary variables b; (i=1,2,3), where b; is 1 if we have bought any items at a unit cost
of COST;.

e Real decision variables x; (i=1,..3) for the number of items bought at price COST;.
e Total amount bought: x =>" ; x;

e Constraint formulation:

(Bi — Bi_1) - bjs1 < x; < (Bj — Bj_1) - bj fori=1,2
X3 < (B3 — By) - b3
by > by > bs

3.4 Non-linear functions

Can model non-linear functions in the same way as incremental pricebreaks

e approximate the non-linear function with a piecewise linear function

e use an SOS2 to model the piecewise linear function

Non-linear function in a single variable

A
y
2
F(2) 7
3
F(3) 7
F(4) 4
F(1) 1
R(1) R(2) R@B) R(4) X

e x-coordinates of the points: Ry, ..., Rg
y-coordinates F, ..., F4. So point 1 is (R, F1) etc.

e Let weights (decision variables) associated with point i be w; (i=1,...,4)

e Form convex combinations of the points using weights w; to get a combination point (x,y):

x=3,wi-R;
y=>,;wi-F
2iwi=1

where the variables w; form an SOS2 set with ordering coefficients defined by values R;.

MIP formulations using other entities (©2009 Fair Isaac Corporation. All rights reserved. page 12
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e Mosel implementation:

declarations

I=1..4

X,y: mpvar

w: array(I) of mpvar
R,F: array(I) of real
end-declarations

! ...assign values to arrays R and F...

! Define the SO0S-2 with "reference row" coefficients from R
Defx:= sum(i in I) R(i)*w(i) 1is_sos2
sum(i in I) w(i) = 1

! The variable and the corresponding function value we want to approximate
x = Defx
y = sum(i in I) F(i)»*w (i)

e BCL implementation:

XPRBprob prob ("testsos");
XPRBvar x, y, wlI];
XPRBexpr Defx, le, ly;
double R[I], FI[I];

int 1i;

// ...assign values to arrays R and F...
// Create the decision variables

x = prob.newVar ("x"); y = prob.newVar (
for (i=0; i<I; i++) w([i] = prob.newVar ("

y")i
w

")

// Define the S0S-2 with "reference row" coefficients from R
for (i=0; 1i<I; i++) Defx += R[i]#*w[i];

prob.newSos ("Defx", XPRB_S2, Defx);

for (i=0; 1i<I; i++) le += w[i];

prob.newCtr ("One", le == 1);

// The variable and the corresponding function value we want to approximate

prob.newCtr ("Egx", x == Defx);
for (i=0; i<I; i++) ly += F[il»w[i];
prob.newCtr ("Eqy", y == ly);

Non-linear function in two variables

Interpolation of a function f in two variables: approximate f at a point P by the corners C of the
enclosing square of a rectangular grid (NB: the representation of P=(x,y) by the four points C
obviously means a fair amount of degeneracy).

‘ ‘ ‘ ‘
6 ——J-_L_J__L_J__L_J__L_J
| \ | \ | \ | \ |
| | | | | | | | |
5--a--r-a--r-a--r-a--r-n
| | | | | | | | |
4 --d--L-d-Ze-é--L_J__L_1
| \ | [ [ \ | \ |
| | | OP, | | | |
3-"--r-A- 2% -9 -r-a--r-n
| | | | | | | | |
D - _L_J__L_J__L_J__L_J.
| \ | \ | \ | \ |
| | | | | | | | |
1--9--r-a--r-a--r-a--r-°-
| | | | | | | | |
| | | | | | | | |
1 2 3 4 5 6 7 8 9
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x-coordinates of grid points: Xi, ..., Xp
y-coordinates of grid points: Y3, ..., Y. So grid points are (Xj, Y)).

Function evaluation at grid points: FXY11, ..., FXYnm

Define weights (decision variables) associated with x and y coordinates, wx; respectively wy;,
and for each grid point (X(i), Y(j)) define a variable wxy;;

Form convex combinations of the points using the weights to get a combination point (x,y)
and the corresponding function approximation:

X = wx;-X;
y=ZjWyf'Yf

f= Zij wxyj; - FXYj;
Vi=1,...,n:zijy,-j=wx,-
Vi=1,...,m:Y wxy; = wy;
Yoiwxp=1

ijyj=1

where the variables wx; form an SOS2 set with ordering coefficients defined by values X;,
and the variables wy; are a second SOS2 set with coordinate values Y; as ordering
coefficients.

Mosel implementation:

declarations
RX,RY:range
X: array (RX) of real ! x coordinate values of grid points
Y: array(RY) of real ! v coordinate values of grid points
FXY: array(RX,RY) of real ! Function evaluation at grid points

end-declarations

' ... initialize data

declarations

wx: array (RX) of mpvar ! Weight on x coordinate

wy: array (RY) of mpvar ! Weight on y coordinate

wxy: array (RX,RY) of mpvar ! Weight on (x,y) coordinates

x,y,f: mpvar
end-declarations

! Definition of SOS (assuming coordinate values <>0)
sum (i in RX) X (i)+wx (i) 1s_sos2
sum(j in RY) Y (J)*wy(]J) 1is_sos2

! Constraints

forall (i in RX) sum(j in RY) wxy (i, Jj) = wx (i)
forall(j in RY) sum(i in RX) wxy (i, Jj) = wy(J)
sum (i in RX) wx (i) =1

sum(j in RY) wy(Jj) =1

! Then x, y and f can be calculated using
x = sum(i in RX) X (1) *wx (1)

y = sum(j in RY) Y (J)*wy(J)

f sum(i in RX,j in RY) FXY (i, j) ~wxy (i, ])

! £ can take negative or positive values (unbounded variable)
f is_free

MIP formulations
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e BCL implementation:

XPRBprob prob ("testsos");

XPRBvar x, vy, f;

XPRBvar wx[NX], wy[NY], wxy[NX][NY]; // Weights on coordinates
XPRBexpr Defx, Defy, le, lexy, 1lx, ly;

double DX[NX], DY[NY];

double FXY[NX][NY];

int 1, 3j;

// ... initialize data arrays DX, DY, FXY

// Create the decision variables

x = prob.newVar ("x"); y = prob.newVar ("y");
f = prob.newVar ("f", XPRB_PL, —-XPRB_INFINITY, XPRB_INFINITY),; // Unbounded variable
for (i=0; 1i<NX; i++) wx[i] = prob.newVar ("wx");
for (3=0; J<NY; J++) wy[j] = prob.newVar ("wy");
for (i=0; 1i<NX; i++)
for (3=0; J<NY; Jj++) wxy[i][J] = prob.newVar ("wxy");

// Definition of SOS

for (1i=0; 1i<NX; i++) Defx += X[i]*wx[1];
prob.newSos ("Defx", XPRB_S2, Defx);

for (j=0; J<NY; Jj++) Defy += Y[Jl+wyl[]];
prob.newSos ("Defy", XPRB_S2, Defy);

// Constraints
for (1i=0; 1i<NX; i++) {

le = 0;
for (3J=0; J<NY; J++) le += wxy[1i][J];
prob.newCtr ("Sumx", le == wx[i]);

}
for (3J=0; J<NY; J++) {
=O;

le
for (i=0; 1i<NX; i++) le += wxy[1i]1[J];
prob.newCtr ("Sumy", le == wy[j]);

}
for (1i=0; 1i<NX; i++) 1x += wx[i];

prob.newCtr ("Convx", 1x == 1);
for (j=0; J<NY; j++) ly += wylJl;
prob.newCtr ("Convy", ly == 1);

// Calculate x, y and the corresponding function value f we want to approximate
prob.newCtr ("Egx", x == Defx);
prob.newCtr ("Eqy", y == Defy);
for (i=0; i<NX; i++)
for (3=0; J<NY; J++) lexy += FXY[i][Jjl*wxy[i][J];
prob.newCtr ("Eqy", f == lexy);

3.5 Minimum activity level

Continuous production rate make. May be 0 (the plant is not operating) or between allowed
production limits MAKEMIN and MAKEMAX

e Can impose using a semi-continuous variable: may be zero, or any value between the
intermediate bound and the upper bound

o Mosel:

make is_semcont MAKEMIN
make <= MAKEMAX
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e BCL:

make = prob.newVar ("make", XPRB_SC, 0, MAKEMAX) ;
make.setLim (MAKEMIN) ;

e Semi-continuous variables are slightly more efficient than the alternative binary variable
formulation that we saw before. But if you incur fixed costs on any non-zero activity, you
must use the binary variable formulation (see Section 2.10).

3.6 Partial integer variables

¢ In general, try to keep the upper bound on integer variables as small as possible. This
reduces the number of possible integer values, and so reduces the time to solve the problem.

e Sometimes this is not possible — a variable has a large upper bound and must take integer
values.
= Try to use partial integer variables instead of integer variables with a very large upper
bound: takes integer values for small values, where it is important to be precise, but takes
real values for larger values, where it is OK to round the value afterwards.

e For example, it may be important to clarify whether the value is 0, 1, 2, ..., 10, but above 10
it is OK to get a real value and round it.

o Mosel:

x is_partint 10 ! x is integer valued from 0 to 10
x <= 20 ! x takes real values from 10 to 20

e BCL:

x = prob.newVar ("x", XPRB_PI, 0, 20);
X.setLim (10);

4 Indicator constraints
Indicator constraints

e associate a binary variable b with a linear constraint C

e model an implication:
'if b=1then C, in symbols: b — C, or
'if b=0then C’, in symbols: b — C
(the constraint C is active only if the condition is true)

e use indicator constraints for the composition of logic expressions

Indicator constraints in Mosel: for the definition of indicator constraints (function indicator of
module mmxprs) you need a binary variable (type mpvar) and a linear inequality constraint (type
linctr). You also have to specify the type of the implication (1 for b — C and -1 for b — C). The
subroutine indicator returns a new constraint of type logctr that can be used in the
composition of other logic expressions (see Section 4.2 below).
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uses "mmxprs"

declarations

R=1..10

C: array(range) of linctr
L: array(range) of logctr
x: array(R) of mpvar

b: array(R) of mpvar
end-declarations

forall(i in R) b(i) is_binary ! Variables for indicator constraints
C(2):= x(2)<=5

! Define 2 indicator constraints

L(1):= indicator(l, b(l), x(1)+x(2)>=12) ' b(l)=1 -> x(1)+x(2)>=12
indicator (-1, b(2), C(2)) ! b(2)=0 —-> x(2)<=5
C(2):=0 ! Delete auxiliary constraint definition

Indicator constraints in BCL: an indicator constraint is defined by associating a binary decision
variable (xPRBvar) and an integer flag (1 for b — C and -1 for b — C) with a linear inequality or
range constraint (xPRBctr). By defining an indicator constraint (function xPRBsetindicator or
method XxPRBctr.setIndicator () depending on the host language) the type of the constraint
itself gets changed; it can be reset to ‘standard constraint’ by calling the set Indicator function
with flag value 0.

XPRBprob prob ("testind");

XPRBvar x[N], b[N];

XPRBctr IndCtr[N];

int 1i;
// Create the decision variables

for (i=0;i<N;i++) x[i] = prob.newVar ("x", XPRB_PL); // Continuous variables
for (i=0;1<N;i++) b[i] = prob.newVar ("b", XPRB_BV); // Indicator variables
// Define 2 linear inequality constraints

IndCtr[0] = prob.newCtr ("L1", x[0]+x[1]>=12);

IndCtr[1l] = prob.newCtr ("L2", x[1]<=5);

// Turn the 2 constraints into indicator constraints

IndCtr[0] .setIndicator(l, b[0]); // b(0)=1 -> x(0)+x(1)>=12
IndCtr[1l].setIndicator (-1, b[1l]); // b(l)=0 —-> x(1)<=5

4.1 Inverse implication
b—ax>b
e Model as
b—ax<b-m
where m is a sufficiently small value (slightly larger than the feasibility tolerance)

b—ax<b

e Model as

b—ax>b+m
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b«—ax=b

o Model as

B — b1 + bz =1
by —ax>b+m
b, —ax<b-m

4.2 Logic constructs

Mosel provides the type 1ogctr for defining and working with logic constraints in MIP models.
The implementation of these constraints is based on indicator constraints. Logic constraints are
composed with linear constraints using the operations and, or, xor, implies, and not as shown
in the following example. Mosel models using logic constraints must include the package advmod
instead of the Optimizer library mmxprs.

uses "advmod"

! xxxx "implies’, ’'not’, and "and’ xxxx
declarations

R=1..3

C: array(range) of linctr

x: array (R) of mpvar

end-declarations

C(l):= x(1)>=10
C(2):= x(2)<=5
C(3):= x(1)+x(2)>=12

implies(C(1l), C(3) and not C(2))
forall(j in 1..3) C(3):=0 ! Delete the auxiliary constraints

! Same as:
implies(x(1)>=10, x(1)+x(2)>=12 and not x(2)<=5)

’ ’ ’ ’

Doxkxx or and X0or Kk KKk

declarations
p: array(l..6) of mpvar
end-declarations

forall(i in 1..6) p(i) is_binary
! Choose at least one of projects 1,2,3 (option A)
! or at least two of projects 2,4,5,6 (option B)

p(l) + p(2) + x(3) >= 1 or p(2) + p(4) + p(5) + p(6) >= 2

! Choose either option A or option B, but not both
xor(p(l) + p(2) + p(3) >= 1, x(2) + p(4) + p(5) + p(6) >= 2)

These logic constructs, particularly the logic or, can be used for the formulation of minimum or
maximum values of a set of variables and also for absolute values:

e Minimum values: y = min{xs, X,, ..., Xy} for continuous variables xi, ..., x,

- Logic formulation:

y<xVi=1...,n
y>X10r...ory>x,
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e Maximum values: y = max{xy, Xz, ..., X} for continuous variables x, ..

- Logic formulation:

y>x; Vi=1,...,n
y<xjor...ory<x,

e Absolute values: y = |xq — x| for two variables x1, x;

- Modeling y = |x1 — x2| is equivalent to y = max{x; — x3, xo — x1}
- Logic formulation:

Yy z=Xx1—Xx2
Y =X2—X
y<xi—xxory<x;—Xx

e Example implementation with Mosel:

declarations

x: array(l..2) of mpvar
y, u, v: mpvar

Cl, C2: linctr

C3: logctr
end-declarations

! Formulation of y = min{x(1l), x(2)}
Cl:=y <= x(1)

C2:=y <= x(2)

C3:=y >= x(1) or y >= x(2)

! Formulation of u = max{x(l), x(2)}
Cl:= u >= x(1)
C2:= u >= x(2)

C3:= u <= x(1) or u <= x(2)

! Formulation of v = |x(1) - x(2)|

Cl:= v >= x(1) - x(2)

C2:= v >= x(2) - x(1)

C3:= v <= x(1) = x(2) or v <= x(2) - x(1)

-,Xn

FICO
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