
www.fico.com Make every decision countTM

Modeling with Xpress

FICOTM Xpress Optimization Suite whitepaper

Last update 26 May, 2009

Modeling with Xpress

Modeling with Xpress

Bob Daniel

Fair Isaac Corporation, Leam House, Leamington Spa CV32 5YN, UK
http://www.fico.com/xpress

26 May, 2009

Abstract
A paper discussing the various options open to the application developer for building and solving models using
FICOTM Xpress.

Contents

1 Introduction . 1
2 Mosel’s Language . 2

2.1 Software Tools . 3
2.2 Clarity and Simplicity . 3
2.3 Security . 3
2.4 Data Access and Manipulation . 3
2.5 Optimization . 3
2.6 Summary . 4

3 BCL . 4
3.1 Security . 4
3.2 Data Access and Data Manipulation . 4
3.3 Model Flexibility . 5
3.4 Summary . 5

4 Optimizer Library . 5
4.1 Summary . 7

5 A Complete Model . 7
5.1 Mosel . 7
5.2 Mosel Runtime . 8
5.3 BCL from C . 9
5.4 BCL from C++ . 11
5.5 BCL from Java . 12

1 Introduction

Model development is perhaps the most intellectually challenging part of practical mathematical
programming. But having once developed an algebraic model of the situation, you are faced
with deciding how to implement the model inside some larger computer system. The primary
considerations you will have are, typically and in no particular order:

• verify model correctness

Introduction c©2009 Fair Isaac Corporation. All rights reserved. page 1

Modeling with Xpress

• ease of model maintenance and modification

• algorithmic considerations

• data access and manipulation

• model execution speed

• speed to market

This paper discusses the various options open to you, the application developer, for building and
solving models using XpressMP. In particular, it assesses their relative strengths and weaknesses
under these criteria of using three approaches

• building models in Mosel, the modeling and optimization environment and language, and
deploying them using Mosel’s libraries and Xpress-Optimizer’s library.

• building and deploying models in your application using the Xpress Builder Library BCL,
together with Xpress-Optimizer’s library.

• building and deploying models in the native language of your application and loading a
complete problem instance directly into Xpress-Optimizer’s library.

In the Appendix we take a small model and show it in Mosel’s modeling language and using BCL
(with C, C++ and Java).

2 Mosel’s Language

Mosel’s modeling language has been designed to be as close as possible to the algebraic
formulation of the model, subject to the limitations of the characters available on the keyboard.
For instance, the algebraic constraints

∀j ∈ {1, . . . , NJ} :
NT−Dj+1∑

t=1

tδjt = sj

are expressed in Mosel as

forall(j in 1..NJ) sum(t in 1..NT-D(j)+1) t*delta(j,t) = s(j)

A sophisticated model can be constructed using a simple syntax that is easy to understand and
quick to implement. Here is part of an example.

declarations
NT = 36; NF = 6; NP = 10 ! Time periods; factories; products
T = 1..NT ; F = 1..NF; P = 1..NP ! Useful ranges
MXMK: array(F) of real ! A real table
YES: array(F,T) of boolean ! A table of Boolean
...

make: array(P,F,T) of mpvar ! Decision variables
open: array(F,T) of mpvar

end-declarations

! Here come some constraints
Profit:= -sum(p in P,f in F, t in T) MCOST(p,f)*make(p,f,t)
forall(f in F, t in T) sum(p in P) make(p,f,t) <= MXMK(f)*open(f,t)
forall(f in F, t in T | YES(f,t)>0) open(f,t) is_binary

Mosel’s Language c©2009 Fair Isaac Corporation. All rights reserved. page 2

Modeling with Xpress

Other features include index sets, powerful integer programming constructs such as partial
integers, semi-continuous variables, special ordered sets and model cuts, and integer
programming directives. In addition, there is a very powerful programming language, with
looping, selections, ranges and sets, and all the constructs of a full programming language.

2.1 Software Tools

The Xpress product suite comprises a sophisticated set of tools to develop and maintain models.
The best tool for developing and debugging models is Xpress-IVE, the integrated modeling and
optimization development environment for Windows.

Mosel is a modeling and optimizing environment that is suited to model development on all
computer platforms. Models can be “called” from programming languages, such as VB, C/C++,
Java, or C#, and embedded within applications using the Mosel libraries. So Mosel has different
parts/interfaces that correspond to the different possible uses of the software: a command line
version for standalone use; libraries enabling integration and use of existing algorithms written
in C/C++ etc.; and the language underlying Xpress-IVE.

2.2 Clarity and Simplicity

As the model is close to its algebraic representation, models are typically very short and
understandable. The modeling language can rapidly be learned and applied, allowing models to
be written, understood and modified quickly and easily. The model is read from a simple text file,
which can be modified and integrated into an application without having to rebuild the
application. Mosel can compile the model, which is then executable on any platform.

2.3 Security

Using Mosel makes the application easy to build, understand, modify and maintain. In many
applications the developer wishes to prevent the end user from reading or modifying the model
files. For example, there may be commercial reasons related to intellectual property or secrecy, or
there may be concerns that end-user modifications could adversely affect quality or reliability.
Mosel’s compiled (BIM) files hide the model from the end user completely.

2.4 Data Access and Manipulation

The methods for manipulating data within Mosel are as powerful, if not more so, as those
provided by a high level programming language. Mosel provides a very high level data
interfacing functionality, allowing common data import and export tasks to be accomplished with
a single line in the model.

So Mosel provides different ways of accessing data, including Mosel’s own format files, which are
very easy to set up; freely formatted text files; data held in memory or generated by other
applications; and via the (additional) ODBC module, access to any database that has an ODBC
interface and to Microsoft Excel spreadsheets. New data sources and formats can be freely
defined by the user.

2.5 Optimization

To solve linear, integer and quadratic programming problems, Mosel uses the Xpress-Optimizer
library. Extension modules provide access to the other solvers of the Xpress suite: Xpress-SLP for
solving nonlinear programming problems, Xpress-SP for stochastic models, and Xpress-Kalis for
using a finite domain and floating point constraint solver. Mosel can also be interfaced to other

Mosel’s Language c©2009 Fair Isaac Corporation. All rights reserved. page 3

Modeling with Xpress

solvers, for instance Tabu Search, for specialized solving techniques.

2.6 Summary

Verify model correctness easy

Maintenance and modification easy

Algorithmic considerations internal

Data access and manipulation high level

Model execution speed potentially slightly slower than the other methods

Speed to market fast

Why use it? good for getting 95% applications to market quickly

3 BCL

The philosophy behind BCL is that from within a high level programming language (C, C++, Java,
C, or VB) you use a library designed for building matrices. Matrices can be constructed in a very
flexible manner, bit by bit, in no pre-ordained order.

Let’s see how our equation might be written in C. We first get all the variables onto the left of
the constraint:

∀j ∈ {1, . . . , NJ} :
NT−Dj+1∑

t=1

tδjt − sj = 0

Then the code fragment might be, where the BCL functions are highlighted:

for(j=0; j<NJ; j++) {
ctr = XPRBnewctr(prob, "C3", XPRB_E);
for(t=0; t<(NT-D[j]+1); t++)

XPRBaddterm(ctr, delta[j][t], t+1);
XPRBaddterm(ctr, s[j], -1);

}

We have omitted the C declarations. In the context of a problem prob, the call to XPRBnewctr()
creates a (pointer to a) new constraint; and XPRB_E specifies that it is an equality constraint. At
this point the constraint is empty, but XPRBaddterm() adds a term with value t+1 to the
constraint for variable delta[j][t]. We use the looping facilities of C to do this for the desired
values of t within the loop over all the possible j values. Finally, we use XPRBaddterm() again to
add the variable s[j] to the constraint with a coefficient of -1. By default, the right hand side of
the constraint is 0.

3.1 Security

BCL comes as a set of routine calls, so the model is completely hidden inside the high level
program. If that is compiled, then the model is not accessible by the end-user.

3.2 Data Access and Data Manipulation

You have all the data handling facilities provided by your programming language. For ODBC this
may not be easy but as long as you are prepared to program then you can access any source.
Moreover, you can perform any manipulations or transformations on the data you have acquired.
You can do verification tests, write sophisticated diagnostics, etc.

BCL c©2009 Fair Isaac Corporation. All rights reserved. page 4

Modeling with Xpress

3.3 Model Flexibility

It is much harder to make models flexible when they have been encoded in a programming
language. Suppose, for instance, that you have built, debugged and deployed a Mosel model to
your end users. And then you want to modify it, perhaps adding a new class of constraints. All
you have to do is to email them the modified model file. But if you are using a programming
interface, then you have to rebuild your application, spend a lot more time testing it, and then
send out a much larger executable.

3.4 Summary

Verify model correctness quite easily verified (harder than Mosel, easier than
XOSL)

Maintenance and modification harder than Mosel, easier than XOSL

Algorithmic considerations easy to build algorithms and exploit structure

Data access and manipulation native programming language; some high level BCL
intrinsic

Model execution speed probably faster than Mosel, probably the same as
XOSL

Speed to market faster than XOSL, slower than Mosel

Why use it? complete flexibility to build and modify model
within your application

4 Optimizer Library

The Xpress-Optimizer Library interface is the lowest level into the Optimizer. You set up the data
structures that the optimizer requires in your programming language, and then pass it to the
library. The library is then instructed to do various things—for instance, to solve the model—and
then you can access the optimal values from your program.

A clue to the (necessary) complexity of the interface can be obtained by looking at the
specification of the routine to load an integer programming problem into the library. It has 23
arguments!

int XPRSloadglobal(XPRSprob prob, char *probname, int ncol,
int nrow, char *qrtype, double *rhs, double *range, double *obj,
int *mstart, int *mnel, int *mrwind, double *dmatval, double *dlb,
double *dub, int ngents, int nsets, char *qgtype, int *mgcols,
double *dlim, char *qstype, int *msstart, int *mscols,
double *dref);

where you have to specify

prob problem pointer

probname name for the problem

ncol number of structural columns (variables)

nrow number of rows (constraints)

qrtype row types (equality, less-than-or-equal-to, etc)

Optimizer Library c©2009 Fair Isaac Corporation. All rights reserved. page 5

Modeling with Xpress

rhs RHS coefficients of the rows

range range values for range rows

obj objective function coefficients

mstart offsets in the mrwind and dmatval arrays of the start of the elements for each
column

mnel number of elements (i.e., coefficients of the variables) for each column

mrwind row indices for the elements in each column

dmatval element values

dlb lower bounds on the columns

dub upper bounds on the columns

ngents number of binary, integer, semi-continuous and partial integer variables

nsets number of special ordered sets (S1 and S2)

qgtype integer variable types (binary, integer, etc)

mgcols column indices of the integer variables

dlim bounds for the partial integer variables and semi-continuous variables

qstype Special Ordered Set types (S1, S2)

msstart offsets into the mscols and dref arrays indicating the start of the sets

mscols the columns in each set

dref reference row entries for each member of the sets

One major difficulty is that you must specify the non-zeros in the constraint matrix by going
down the first column, then the second column, and so on. Thus if constraints are added or
dropped from the formulation, the program has to be modified in a major way.

The only real advantage of “modeling” in the library over modeling in BCL is that the library is
very marginally quicker, as BCL itself has to massage the data into the loadglobal() format
before it passes data across to the Optimizer library. This takes very little time, but obviously, if
you do it in your program, interfacing directly to the Optimizer library, that small overhead is
avoided. (Of course, you can use the Optimizer library’s very powerful features with a matrix
which has been created with BCL, so nothing except a little speed is lost by modeling with BCL.)

We are not going to give you our prototypical equation written directly for the Optimizer library
interface, for two reasons. The first is that the interface is activity (column) oriented. The second
is that it is a nightmare.

Traditionally optimization subroutine libraries like the Optimizer library have provided the only
means to write efficient applications using optimization, and such libraries are widely used for
that purpose. But the Mosel language and BCL offer real advantages for building and
manipulating problems, and near zero cost in terms of speed of application.

Optimizer Library c©2009 Fair Isaac Corporation. All rights reserved. page 6

Modeling with Xpress

4.1 Summary

A perhaps prejudiced view of the advantages/disadvantages of the direct Optimizer library
interface is:

Verify model correctness very hard

Maintenance and modification extremely difficult

Algorithmic considerations easy to build algorithms

Data access and manipulation native programming language

Model execution speed probably the fastest

Speed to market slowest

Why use it? most efficient but lose easy model development and
maintenance

5 A Complete Model

5.1 Mosel

Here is a complete Mosel model.

model sched
uses "mmxprs" ! Xpress-Optimizer is used
declarations
NJ = 4 ; NT = 10 ! Number of jobs / time limit
J = 1..NJ; T = 1..NT ! Useful ranges
D: array(J) of integer ! Table for durations of jobs
s: array(J) of mpvar ! Start times of jobs
delta: array(J,T) of mpvar ! Binaries for start times
z: mpvar ! Maximum completion time (makespan)

end-declarations

D:: [3, 4, 2, 2] ! Durations of jobs

forall(j in J) s(j) <= NT-D(j)+1 ! Interval for start times
forall(j in J, t in 1..NT-D(j)+1) delta(j,t) is_binary ! Binaries

! The constraints
forall(j in J) do

! Calculate maximum completion time of all jobs
C1(j):= z >= D(j) + s(j)
! Relation linking start times of jobs with corresponding binaries

C3(j):= SUM(t in 1..NT-D(j)+1) t*delta(j,t) = s(j)
! One start time for each job

C4(j):= SUM(t in 1..NT-D(j)+1) delta(j,t) = 1
end-do

! Precedence relation between two pairs of two jobs
C2_31:= s(3) >= D(1) + s(1) ! 3 must follow 1
C2_41:= s(4) >= D(1) + s(1) ! 4 must follow 1

! Objective function to be minimized
minimize(z)

writeln(" Min makespan is ", getobjval)
forall(j in J) writeln(" Job ", j, " starts at time ", getsol(s(j)))

end-model

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 7

Modeling with Xpress

5.2 Mosel Runtime

In Mosel runtime, the same model can be used. Here is a typical application in C that loads the
compiled model, solves the MIP, and prints a little bar chart. We assume that the compiled model
is held in a file sched.bim.

#include <stdio.h>
#include "xprm_rt.h"

int main(int argc, char **argv)
{
XPRMmodel mod;
XPRMalltypes rvalue;
XPRMarray varr, darr;
XPRMmpvar s;
int indices[1], result, nt, t, D;

XPRMinit(); /* Initialize Mosel */

mod=XPRMloadmod("sched.bim", NULL); /* Load a BIM file */

XPRMrunmod(mod, &result, NULL); /* Run & optimize the model */

printf("\nMinimum makespan %g\n", XPRMgetobjval(mod));

XPRMfindident(mod, "s", &rvalue); /* Get the model object ’s’ */
varr = rvalue.array;
XPRMfindident(mod, "D", &rvalue); /* Get the model object ’D’ */
darr = rvalue.array;
XPRMfindident(mod, "NT", &rvalue); /* Get the model object ’NT’ */
nt = rvalue.integer;

/* Print a little bar chart */
printf("Job Time:1234567890\n");
XPRMgetfirstarrentry(varr, indices); /* Get 1st entry of array varr */
do
{
XPRMgetarrval(varr,indices,&s); /* Get a variable from varr */
XPRMgetarrval(darr,indices,&D); /* Get corresponding duration */

printf(" %d ", indices[0]);
for(t=1; t < nt; t++)
printf("%s", (t >= XPRMgetvsol(mod,s) && t < XPRMgetvsol(mod,s)+D) ?

"*" : " ");
printf(" (Start/Duration %g/%d)\n", XPRMgetvsol(mod,s), D);

} while(!XPRMgetnextarrentry(varr, indices));

return 0;
}

Note that we have been able to get model parameters (NJ, NT), and data table values (table D).
We have retrieved optimal values into the program. Here is the same application written in Java.

import com.dashoptimization.*;

public class runsched
{
public static void main(String[] args) throws Exception
{
XPRM mosel;
XPRMModel mod;
XPRMArray varr, darr;
XPRMMPVar s;
int[] indices;

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 8

Modeling with Xpress

int nt, t, D;

mosel = new XPRM(); // Initialize Mosel

mod = mosel.loadModel("sched.bim"); // Load a bim file
mod.run(); // Run & optimize the model

if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
System.exit(1); // Stop if no solution found

System.out.println("Minimum makespan " + mod.getObjectiveValue());

varr=(XPRMArray)mod.findIdentifier("s"); // Get the model object ’s’
darr=(XPRMArray)mod.findIdentifier("D"); // Get the model object ’D’
nt=((XPRMConstant)mod.findIdentifier("NT")).asInteger();

// Get the model object ’NT’

// Print a little bar chart
System.out.println("Job Time:1234567890");
indices = varr.getFirstIndex(); // Get 1st entry of array varr
do
{
s = varr.get(indices).asMPVar(); // Get a variable from varr
D = darr.getAsInteger(indices); // Get corresponding duration

System.out.print(" " + indices[0] + " ");
for(t=1; t < nt; t++)
System.out.print((t >= s.getSolution() && t < s.getSolution()+D) ?

"*" : " ");
System.out.println(" (Start/Duration " + s.getSolution() + "/" + D + ")");
} while(varr.nextIndex(indices)); // Get the next index

}
}

5.3 BCL from C

Here is the same model, written in C using BCL.

#include <stdio.h>
#include "xprb.h"

#define NJ 4 /* Number of jobs */
#define NT 10 /* Time limit */

int D[NJ] = {3, 4, 2, 2}; /* Durations of jobs */

XPRBvar s[NJ]; /* Start times of jobs */
XPRBvar delta[NJ][NT]; /* Binaries for start times */
XPRBvar z; /* Maximum completion time (makespan) */
XPRBprob p; /* A problem */

void model(void); /* The BCL model */
void solve(void); /* Solving and solution printing */

int main(int argc, char **argv)
{

model(); /* Formulation */
solve(); /* Solve and print solution */
return 0;

}

void model(void) /* BCL formulation */
{
XPRBctr ctr;

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 9

Modeling with Xpress

int j, t;

p = XPRBnewprob("Jobs"); /* Initialize BCL & create a new problem */

/**** Create variables ****/
for(j = 0; j < NJ; j++)
s[j] = XPRBnewvar(p, XPRB_PL, XPRBnewname("s_%d",j+1), 0, NT-D[j]+1);

z = XPRBnewvar(p, XPRB_PL, "z", 0, NT);

for(j = 0; j < NJ; j++)
for(t = 0; t < NT-D[j]+1; t++)
delta[j][t]=XPRBnewvar(p, XPRB_BV, XPRBnewname("delta_%d%d",j+1,t+1),

0, 1);

/**** Constraints ****/
/* Calculate maximum completion time of all jobs */

for(j = 0; j < NJ; j++)
{
ctr = XPRBnewctr(p, XPRBnewname("C1_%d",j), XPRB_G);
XPRBaddterm(ctr, z, 1);
XPRBaddterm(ctr, s[j], -1);
XPRBaddterm(ctr, NULL, D[j]);

}

/* Precedence relations between two pairs of jobs */
/* C2_31: 3 must follow 1 */

ctr = XPRBnewctr(p, "C2_31", XPRB_G);
XPRBaddterm(ctr, s[2], 1);
XPRBaddterm(ctr, s[0], -1);
XPRBaddterm(ctr, NULL, D[0]);

/* C2_41: 4 must follow 1 */
ctr = XPRBnewctr(p, "C2_41", XPRB_G);
XPRBaddterm(ctr, s[3], 1);
XPRBaddterm(ctr, s[0], -1);
XPRBaddterm(ctr, NULL, D[0]);

/* Relation linking start time of jobs with corresponding binary */
for(j = 0; j < NJ; j++)
{
ctr = XPRBnewctr(p, XPRBnewname("C3_%d", j+1), XPRB_E);
for(t = 0; t < NT-D[j]+1; t++) XPRBaddterm(ctr, delta[j][t], t+1);
XPRBaddterm(ctr, s[j], -1);

}

/* One start time for each job */
for(j = 0; j < NJ; j++)
{
ctr = XPRBnewctr(p, XPRBnewname("C4_%d",j+1), XPRB_E);
for(t = 0; t < NT-D[j]+1; t++) XPRBaddterm(ctr, delta[j][t], 1);
XPRBaddterm(ctr, NULL, 1);

}

/**** Objective ****/
ctr = XPRBnewctr(p, "MINIM", XPRB_N);
XPRBaddterm(ctr, z, 1);
XPRBsetobj(p, ctr); /* Select objective function */

}

void solve(void)
{
int statmip, j;

XPRBsetsense(p, XPRB_MINIM);
XPRBsolve(p, "g"); /* Solve the problem as MIP */

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 10

Modeling with Xpress

statmip = XPRBgetmipstat(p); /* Get the MIP problem status */

if((statmip == XPRB_MIP_SOLUTION) || (statmip == XPRB_MIP_OPTIMAL))
{ /* An integer solution has been found */
printf(" Min makespan is %g\n", XPRBgetobjval(p));
for(j = 0; j < NJ; j++) /* Print solution for all start times */
printf(" %s starts at time %g\n", XPRBgetvarname(s[j]),

XPRBgetsol(s[j]));
}

}

5.4 BCL from C++

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NJ 4 // Number of jobs
#define NT 10 // Time limit

/**** DATA ****/
double D[] = {3,4,2,2}; // Durations of jobs

XPRBvar s[NJ]; // Start times of jobs
XPRBvar delta[NJ][NT]; // Binaries for start times
XPRBvar z; // Maximum completion time (makespan)
XPRBsos set[NJ]; // Sets regrouping start times for jobs

void model(void); // Basic model formulation
void solve(void); // Solving and solution printing

XPRBprob p("Jobs"); // Initialize BCL and a new problem

int main(int argc, char **argv)
{

model(); // Problem definition
solve(); // Solve and print solution
return 0;

}

void model()
{
XPRBexpr le;
int j, t;

// Create start time variables
for(j=0; j<NJ; j++) s[j] = p.newVar("start", XPRB_PL);

z = p.newVar("z",XPRB_PL,0,NT); // Declare the makespan variable

for(j=0; j<NJ; j++) // Declare binaries for each job
for(t=0; t<(NT-D[j]+1); t++)
delta[j][t] = p.newVar(xbnewname("delta_%d%d",j+1,t+1), XPRB_BV);

/**** Constraints ****/
for(j=0; j<NJ; j++) // Calculate maximal completion time
p.newCtr("C1", s[j]+D[j] <= z);

p.newCtr("C2_31", s[0]+D[0] <= s[2]); // 3 must follow 1
p.newCtr("C2_41", s[0]+D[0] <= s[3]); // 4 must follow 1

for(j=0; j<NJ; j++) // Linking start times and binaries

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 11

Modeling with Xpress

{
le = 0;
for(t=0; t<(NT-D[j]+1); t++) le += (t+1)*delta[j][t];
p.newCtr(xbnewname("C3_%d",j+1), le == s[j]);

}

for(j=0; j<NJ; j++) // One start time for each job
{
le = 0;
for(t=0; t<(NT-D[j]+1); t++) le += delta[j][t];
p.newCtr(xbnewname("C4_%d",j+1), le == 1);

}

/**** Objective ****/
p.setObj(p.newCtr("OBJ", z)); // Define and set objective function

for(j=0; j<NJ; j++) s[j].setUB(NT-D[j]+1);
// Upper bnds on start time variables

/**** Output ****/
p.print(); // Print out the problem definition

}

void solve()
{
int statmip, j;

p.setSense(XPRB_MINIM); // Say we are minimizing
p.solve("g"); // Solve the problem as a MIP
statmip = p.getMIPStat(); // Get the MIP problem status

if((statmip == XPRB_MIP_SOLUTION) || (statmip == XPRB_MIP_OPTIMAL))
{ // An integer solution has been found
cout << " Min makespan is " << p.getObjVal() << endl;
for(j=0; j<NJ; j++) // Print solution for all start times
cout << s[j].getName() << ": " << s[j].getSol() << endl;

}
}

5.5 BCL from Java

Here it is in Java.

import com.dashoptimization.*;

public class schedjava
{
static final int NJ = 4; /* Number of jobs */
static final int NT = 10; /* Time limit */

static final double[] D = {3,4,2,2}; /* Durations of jobs */

static XPRB bcl;
static XPRBvar[] s; /* Start times of jobs */
static XPRBvar[][] delta; /* Binaries for start times */
static XPRBvar z; /* Maximum completion time (makespan) */
static XPRBprob p; /* A problem */

static void model()
{
XPRBexpr le;
int j, t;

s = new XPRBvar[NJ]; /* Create start time variables */
for(j=0; j<NJ; j++) s[j] = p.newVar("start", XPRB.PL);

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 12

Modeling with Xpress

z = p.newVar("z",XPRB.PL,0,NT); /* Declare the makespan variable */

delta = new XPRBvar[NJ][NT];
for(j=0; j<NJ; j++) /* Declare binaries for each job */
for(t=0; t<(NT-D[j]+1); t++)
delta[j][t] = p.newVar("delta"+(j+1)+(t+1), XPRB.BV);

for(j=0; j<NJ; j++) /* Calculate maximal completion time */
p.newCtr("C1", s[j].add(D[j]).lEql(z));

/* Prec. rel. betw. 2 pairs of jobs */
p.newCtr("C2_31", s[0].add(D[0]).lEql(s[2]));
p.newCtr("C2_41", s[0].add(D[0]).lEql(s[3]));

for(j=0; j<NJ; j++) /* Linking start times and binaries */
{
le = new XPRBexpr();
for(t=0; t<(NT-D[j]+1); t++) le.add(delta[j][t].mul((t+1)));
p.newCtr("C3_"+(j+1), le.eql(s[j]));

}

for(j=0; j<NJ; j++) /* One start time for each job */
{
le = new XPRBexpr();
for(t=0; t<(NT-D[j]+1); t++) le.add(delta[j][t]);
p.newCtr("C4_"+(j+1), le.eql(1));

}

p.setObj(z); /* Define and set objective function */

for(j=0; j<NJ; j++) s[j].setUB(NT-D[j]+1);
/* Upper bnds on start time variables */

p.print(); /* Print out the problem definition */
}

static void solve()
{
int statmip, j, t;

p.setSense(XPRB.MINIM);
p.solve("g"); /* Solve the problem as MIP */
statmip = p.getMIPStat(); /* Get the MIP problem status */

if((statmip == XPRB.MIP_SOLUTION) || (statmip == XPRB.MIP_OPTIMAL))
{ /* An integer solution has been found */
System.out.println("Objective: "+ p.getObjVal());
for(j=0;j<NJ;j++) /* Print solution for all start times */
System.out.println(s[j].getName() + ": "+ s[j].getSol());

}
}

public static void main(String[] args)
{
bcl = new XPRB(); /* Initialize BCL */
p = bcl.newProb("Jobs"); /* Create a new problem */
model(); /* Problem definition */
solve(); /* Solve and print solution */
}

}

A Complete Model c©2009 Fair Isaac Corporation. All rights reserved. page 13

	Introduction
	Mosel's Language
	Software Tools
	Clarity and Simplicity
	Security
	Data Access and Manipulation
	Optimization
	Summary

	BCL
	Security
	Data Access and Data Manipulation
	Model Flexibility
	Summary

	Optimizer Library
	Summary

	A Complete Model
	Mosel
	Mosel Runtime
	BCL from C
	BCL from C++
	BCL from Java

